Compare commits

...

20 Commits

Author SHA1 Message Date
Philipp Oppermann
c6dd37dcc5 Turn page of old P4 into guard page 2017-11-19 11:44:50 +01:00
Philipp Oppermann
2a3ce863fd Enable write protect bit to improve safety 2017-11-19 11:44:50 +01:00
Philipp Oppermann
ffaddeb84e Fix boot loop by enabling the NXE bit in the EFER register 2017-11-19 11:44:50 +01:00
Philipp Oppermann
0ce2b46ad1 Use the correct entry flags for kernel sections 2017-11-19 11:44:50 +01:00
Philipp Oppermann
11993b7e15 Also identity map the multiboot info structure 2017-11-19 11:44:50 +01:00
Philipp Oppermann
fdacfb24f0 Fix boot loop by identity mapping the vga buffer 2017-11-19 11:44:50 +01:00
Philipp Oppermann
564c6b64e9 Switch to the new page table after mapping all sections 2017-11-19 11:44:50 +01:00
Philipp Oppermann
fa3b572d68 Only print kernel/multiboot start/end in rust_main 2017-11-19 11:44:50 +01:00
Philipp Oppermann
40f1732ccb Call remap_the_kernel from rust_main 2017-11-19 11:44:49 +01:00
Philipp Oppermann
5d898d8474 Page align all sections as they will be individually mapped 2017-11-19 11:44:49 +01:00
Philipp Oppermann
e029eabe18 Add a remap_the_kernel function 2017-11-19 11:44:49 +01:00
Philipp Oppermann
60d7c736a5 Add a (now safe) with method 2017-11-19 11:44:49 +01:00
Philipp Oppermann
2f30b0f7cf Create a new ActivePageTable struct that derefs to Mapper 2017-11-19 11:44:49 +01:00
Philipp Oppermann
ce9c4d6e43 Refactor: Move ActivePageTable to new mapper submodule and rename to Mapper 2017-11-19 11:44:49 +01:00
Philipp Oppermann
4160cb6d7e Begin creating an ActivePageTable::with function 2017-11-19 11:42:33 +01:00
Philipp Oppermann
b2e79752fd Fix InactivePageTable::new function using a temporary page 2017-11-19 11:42:33 +01:00
Philipp Oppermann
11ae7e8aeb Create a temporary_page module 2017-11-19 11:42:33 +01:00
Philipp Oppermann
1737f48284 Create a InactivePageTable struct 2017-11-19 11:42:33 +01:00
Philipp Oppermann
1f1f6c62da Derive Copy and Clone for Page and add a Frame::clone method 2017-11-19 11:42:33 +01:00
Philipp Oppermann
bb3f17c0b9 Update Readme for “Remap the Kernel” post 2017-11-19 11:42:33 +01:00
8 changed files with 477 additions and 134 deletions

View File

@@ -1,7 +1,7 @@
# Blog OS (Page Tables)
[![Build Status](https://travis-ci.org/phil-opp/blog_os.svg?branch=post_6)](https://travis-ci.org/phil-opp/blog_os/branches)
# Blog OS (Remap the Kernel)
[![Build Status](https://travis-ci.org/phil-opp/blog_os.svg?branch=post_7)](https://travis-ci.org/phil-opp/blog_os/branches)
This repository contains the source code for the [Page Tables](http://os.phil-opp.com/modifying-page-tables.html) post of the [Writing an OS in Rust](http://os.phil-opp.com) series.
This repository contains the source code for the [Remap the Kernel](http://os.phil-opp.com/remap-the-kernel.html) post of the [Writing an OS in Rust](http://os.phil-opp.com) series.
**Check out the [master branch](https://github.com/phil-opp/blog_os) for more information.**

View File

@@ -1,24 +1,53 @@
ENTRY(start)
SECTIONS {
. = 1M;
. = 1M;
.boot :
{
/* ensure that the multiboot header is at the beginning */
KEEP(*(.multiboot_header))
}
.rodata :
{
/* ensure that the multiboot header is at the beginning */
KEEP(*(.multiboot_header))
*(.rodata .rodata.*)
. = ALIGN(4K);
}
.text :
{
*(.text .text.*)
}
.text :
{
*(.text .text.*)
. = ALIGN(4K);
}
.rodata : {
*(.rodata .rodata.*)
}
.data :
{
*(.data .data.*)
. = ALIGN(4K);
}
.data.rel.ro : {
*(.data.rel.ro.local*) *(.data.rel.ro .data.rel.ro.*)
}
.bss :
{
*(.bss .bss.*)
. = ALIGN(4K);
}
.got :
{
*(.got)
. = ALIGN(4K);
}
.got.plt :
{
*(.got.plt)
. = ALIGN(4K);
}
.data.rel.ro : ALIGN(4K) {
*(.data.rel.ro.local*) *(.data.rel.ro .data.rel.ro.*)
. = ALIGN(4K);
}
.gcc_except_table : ALIGN(4K) {
*(.gcc_except_table)
. = ALIGN(4K);
}
}

View File

@@ -26,21 +26,8 @@ pub extern fn rust_main(multiboot_information_address: usize) {
let boot_info = unsafe{ multiboot2::load(multiboot_information_address) };
let memory_map_tag = boot_info.memory_map_tag()
.expect("Memory map tag required");
println!("memory areas:");
for area in memory_map_tag.memory_areas() {
println!(" start: 0x{:x}, length: 0x{:x}",
area.base_addr, area.length);
}
let elf_sections_tag = boot_info.elf_sections_tag()
.expect("Elf-sections tag required");
println!("kernel sections:");
for section in elf_sections_tag.sections() {
println!(" addr: 0x{:x}, size: 0x{:x}, flags: 0x{:x}",
section.addr, section.size, section.flags);
}
.expect("Elf sections tag required");
let kernel_start = elf_sections_tag.sections().map(|s| s.addr)
.min().unwrap();
@@ -49,11 +36,37 @@ pub extern fn rust_main(multiboot_information_address: usize) {
let multiboot_start = multiboot_information_address;
let multiboot_end = multiboot_start + (boot_info.total_size as usize);
println!("kernel start: 0x{:x}, kernel end: 0x{:x}",
kernel_start, kernel_end);
println!("multiboot start: 0x{:x}, multiboot end: 0x{:x}",
multiboot_start, multiboot_end);
let mut frame_allocator = memory::AreaFrameAllocator::new(
kernel_start as usize, kernel_end as usize, multiboot_start,
multiboot_end, memory_map_tag.memory_areas());
loop{}
enable_nxe_bit();
enable_write_protect_bit();
memory::remap_the_kernel(&mut frame_allocator, boot_info);
println!("It did not crash!");
loop {}
}
fn enable_nxe_bit() {
use x86_64::registers::msr::{IA32_EFER, rdmsr, wrmsr};
let nxe_bit = 1 << 11;
unsafe {
let efer = rdmsr(IA32_EFER);
wrmsr(IA32_EFER, efer | nxe_bit);
}
}
fn enable_write_protect_bit() {
use x86_64::registers::control_regs::{cr0, cr0_write, Cr0};
unsafe { cr0_write(cr0() | Cr0::WRITE_PROTECT) };
}
#[lang = "eh_personality"] extern fn eh_personality() {}

View File

@@ -1,4 +1,5 @@
pub use self::area_frame_allocator::AreaFrameAllocator;
pub use self::paging::remap_the_kernel;
use self::paging::PhysicalAddress;
mod area_frame_allocator;
@@ -19,8 +20,38 @@ impl Frame {
fn start_address(&self) -> PhysicalAddress {
self.number * PAGE_SIZE
}
fn clone(&self) -> Frame {
Frame { number: self.number }
}
fn range_inclusive(start: Frame, end: Frame) -> FrameIter {
FrameIter {
start: start,
end: end,
}
}
}
struct FrameIter {
start: Frame,
end: Frame,
}
impl Iterator for FrameIter {
type Item = Frame;
fn next(&mut self) -> Option<Frame> {
if self.start <= self.end {
let frame = self.start.clone();
self.start.number += 1;
Some(frame)
} else {
None
}
}
}
pub trait FrameAllocator {
fn allocate_frame(&mut self) -> Option<Frame>;
fn deallocate_frame(&mut self, frame: Frame);

View File

@@ -1,4 +1,5 @@
use memory::Frame;
use multiboot2::ElfSection;
pub struct Entry(u64);
@@ -45,3 +46,26 @@ bitflags! {
const NO_EXECUTE = 1 << 63,
}
}
impl EntryFlags {
pub fn from_elf_section_flags(section: &ElfSection) -> EntryFlags {
use multiboot2::{ELF_SECTION_ALLOCATED, ELF_SECTION_WRITABLE,
ELF_SECTION_EXECUTABLE};
let mut flags = EntryFlags::empty();
if section.flags().contains(ELF_SECTION_ALLOCATED) {
// section is loaded to memory
flags = flags | PRESENT;
}
if section.flags().contains(ELF_SECTION_WRITABLE) {
flags = flags | WRITABLE;
}
if !section.flags().contains(ELF_SECTION_EXECUTABLE) {
flags = flags | NO_EXECUTE;
}
flags
}
}

118
src/memory/paging/mapper.rs Normal file
View File

@@ -0,0 +1,118 @@
use super::{VirtualAddress, PhysicalAddress, Page, ENTRY_COUNT};
use super::entry::*;
use super::table::{self, Table, Level4, Level1};
use memory::{PAGE_SIZE, Frame, FrameAllocator};
use core::ptr::Unique;
pub struct Mapper {
p4: Unique<Table<Level4>>,
}
impl Mapper {
pub unsafe fn new() -> Mapper {
Mapper {
p4: Unique::new_unchecked(table::P4),
}
}
pub fn p4(&self) -> &Table<Level4> {
unsafe { self.p4.as_ref() }
}
pub fn p4_mut(&mut self) -> &mut Table<Level4> {
unsafe { self.p4.as_mut() }
}
pub fn translate(&self, virtual_address: VirtualAddress) -> Option<PhysicalAddress> {
let offset = virtual_address % PAGE_SIZE;
self.translate_page(Page::containing_address(virtual_address))
.map(|frame| frame.number * PAGE_SIZE + offset)
}
pub fn translate_page(&self, page: Page) -> Option<Frame> {
let p3 = self.p4().next_table(page.p4_index());
let huge_page = || {
p3.and_then(|p3| {
let p3_entry = &p3[page.p3_index()];
// 1GiB page?
if let Some(start_frame) = p3_entry.pointed_frame() {
if p3_entry.flags().contains(HUGE_PAGE) {
// address must be 1GiB aligned
assert!(start_frame.number % (ENTRY_COUNT * ENTRY_COUNT) == 0);
return Some(Frame {
number: start_frame.number + page.p2_index() *
ENTRY_COUNT + page.p1_index(),
});
}
}
if let Some(p2) = p3.next_table(page.p3_index()) {
let p2_entry = &p2[page.p2_index()];
// 2MiB page?
if let Some(start_frame) = p2_entry.pointed_frame() {
if p2_entry.flags().contains(HUGE_PAGE) {
// address must be 2MiB aligned
assert!(start_frame.number % ENTRY_COUNT == 0);
return Some(Frame {
number: start_frame.number + page.p1_index()
});
}
}
}
None
})
};
p3.and_then(|p3| p3.next_table(page.p3_index()))
.and_then(|p2| p2.next_table(page.p2_index()))
.and_then(|p1| p1[page.p1_index()].pointed_frame())
.or_else(huge_page)
}
pub fn map_to<A>(&mut self, page: Page, frame: Frame, flags: EntryFlags,
allocator: &mut A)
where A: FrameAllocator
{
let p4 = self.p4_mut();
let mut p3 = p4.next_table_create(page.p4_index(), allocator);
let mut p2 = p3.next_table_create(page.p3_index(), allocator);
let mut p1 = p2.next_table_create(page.p2_index(), allocator);
assert!(p1[page.p1_index()].is_unused());
p1[page.p1_index()].set(frame, flags | PRESENT);
}
pub fn map<A>(&mut self, page: Page, flags: EntryFlags, allocator: &mut A)
where A: FrameAllocator
{
let frame = allocator.allocate_frame().expect("out of memory");
self.map_to(page, frame, flags, allocator)
}
pub fn identity_map<A>(&mut self, frame: Frame, flags: EntryFlags, allocator: &mut A)
where A: FrameAllocator
{
let page = Page::containing_address(frame.start_address());
self.map_to(page, frame, flags, allocator)
}
pub fn unmap<A>(&mut self, page: Page, allocator: &mut A)
where A: FrameAllocator
{
use x86_64::instructions::tlb;
use x86_64::VirtualAddress;
assert!(self.translate(page.start_address()).is_some());
let p1 = self.p4_mut()
.next_table_mut(page.p4_index())
.and_then(|p3| p3.next_table_mut(page.p3_index()))
.and_then(|p2| p2.next_table_mut(page.p2_index()))
.expect("mapping code does not support huge pages");
let frame = p1[page.p1_index()].pointed_frame().unwrap();
p1[page.p1_index()].set_unused();
tlb::flush(VirtualAddress(page.start_address()));
// TODO free p(1,2,3) table if empty
//allocator.deallocate_frame(frame);
}
}

View File

@@ -1,16 +1,23 @@
pub use self::entry::*;
pub use self::mapper::Mapper;
use core::ops::{Deref, DerefMut};
use core::ptr::Unique;
use memory::{PAGE_SIZE, Frame, FrameAllocator};
use multiboot2::BootInformation;
use self::table::{Table, Level4};
use self::temporary_page::TemporaryPage;
mod entry;
mod table;
mod temporary_page;
mod mapper;
const ENTRY_COUNT: usize = 512;
pub type PhysicalAddress = usize;
pub type VirtualAddress = usize;
#[derive(Debug, Clone, Copy)]
pub struct Page {
number: usize,
}
@@ -42,116 +49,158 @@ impl Page {
}
pub struct ActivePageTable {
p4: Unique<Table<Level4>>,
mapper: Mapper,
}
impl Deref for ActivePageTable {
type Target = Mapper;
fn deref(&self) -> &Mapper {
&self.mapper
}
}
impl DerefMut for ActivePageTable {
fn deref_mut(&mut self) -> &mut Mapper {
&mut self.mapper
}
}
impl ActivePageTable {
pub unsafe fn new() -> ActivePageTable {
unsafe fn new() -> ActivePageTable {
ActivePageTable {
p4: Unique::new_unchecked(table::P4),
mapper: Mapper::new(),
}
}
fn p4(&self) -> &Table<Level4> {
unsafe { self.p4.as_ref() }
}
fn p4_mut(&mut self) -> &mut Table<Level4> {
unsafe { self.p4.as_mut() }
}
pub fn translate(&self, virtual_address: VirtualAddress) -> Option<PhysicalAddress> {
let offset = virtual_address % PAGE_SIZE;
self.translate_page(Page::containing_address(virtual_address))
.map(|frame| frame.number * PAGE_SIZE + offset)
}
fn translate_page(&self, page: Page) -> Option<Frame> {
use self::entry::HUGE_PAGE;
let p3 = self.p4().next_table(page.p4_index());
let huge_page = || {
p3.and_then(|p3| {
let p3_entry = &p3[page.p3_index()];
// 1GiB page?
if let Some(start_frame) = p3_entry.pointed_frame() {
if p3_entry.flags().contains(HUGE_PAGE) {
// address must be 1GiB aligned
assert!(start_frame.number % (ENTRY_COUNT * ENTRY_COUNT) == 0);
return Some(Frame {
number: start_frame.number + page.p2_index() *
ENTRY_COUNT + page.p1_index(),
});
}
}
if let Some(p2) = p3.next_table(page.p3_index()) {
let p2_entry = &p2[page.p2_index()];
// 2MiB page?
if let Some(start_frame) = p2_entry.pointed_frame() {
if p2_entry.flags().contains(HUGE_PAGE) {
// address must be 2MiB aligned
assert!(start_frame.number % ENTRY_COUNT == 0);
return Some(Frame {
number: start_frame.number + page.p1_index()
});
}
}
}
None
})
};
p3.and_then(|p3| p3.next_table(page.p3_index()))
.and_then(|p2| p2.next_table(page.p2_index()))
.and_then(|p1| p1[page.p1_index()].pointed_frame())
.or_else(huge_page)
}
pub fn map_to<A>(&mut self, page: Page, frame: Frame, flags: EntryFlags,
allocator: &mut A)
where A: FrameAllocator
{
let p4 = self.p4_mut();
let mut p3 = p4.next_table_create(page.p4_index(), allocator);
let mut p2 = p3.next_table_create(page.p3_index(), allocator);
let mut p1 = p2.next_table_create(page.p2_index(), allocator);
assert!(p1[page.p1_index()].is_unused());
p1[page.p1_index()].set(frame, flags | PRESENT);
}
pub fn map<A>(&mut self, page: Page, flags: EntryFlags, allocator: &mut A)
where A: FrameAllocator
{
let frame = allocator.allocate_frame().expect("out of memory");
self.map_to(page, frame, flags, allocator)
}
pub fn identity_map<A>(&mut self, frame: Frame, flags: EntryFlags, allocator: &mut A)
where A: FrameAllocator
{
let page = Page::containing_address(frame.start_address());
self.map_to(page, frame, flags, allocator)
}
fn unmap<A>(&mut self, page: Page, allocator: &mut A)
where A: FrameAllocator
pub fn with<F>(&mut self,
table: &mut InactivePageTable,
temporary_page: &mut temporary_page::TemporaryPage, // new
f: F)
where F: FnOnce(&mut Mapper)
{
use x86_64::instructions::tlb;
use x86_64::VirtualAddress;
use x86_64::registers::control_regs;
assert!(self.translate(page.start_address()).is_some());
{
let backup = Frame::containing_address(
control_regs::cr3().0 as usize);
let p1 = self.p4_mut()
.next_table_mut(page.p4_index())
.and_then(|p3| p3.next_table_mut(page.p3_index()))
.and_then(|p2| p2.next_table_mut(page.p2_index()))
.expect("mapping code does not support huge pages");
let frame = p1[page.p1_index()].pointed_frame().unwrap();
p1[page.p1_index()].set_unused();
tlb::flush(VirtualAddress(page.start_address()));
// TODO free p(1,2,3) table if empty
//allocator.deallocate_frame(frame);
// map temporary_page to current p4 table
let p4_table = temporary_page.map_table_frame(backup.clone(), self);
// overwrite recursive mapping
self.p4_mut()[511].set(table.p4_frame.clone(), PRESENT | WRITABLE);
tlb::flush_all();
// execute f in the new context
f(self);
// restore recursive mapping to original p4 table
p4_table[511].set(backup, PRESENT | WRITABLE);
tlb::flush_all();
}
temporary_page.unmap(self);
}
pub fn switch(&mut self, new_table: InactivePageTable) -> InactivePageTable {
use x86_64::PhysicalAddress;
use x86_64::registers::control_regs;
let old_table = InactivePageTable {
p4_frame: Frame::containing_address(
control_regs::cr3().0 as usize
),
};
unsafe {
control_regs::cr3_write(PhysicalAddress(
new_table.p4_frame.start_address() as u64));
}
old_table
}
}
pub struct InactivePageTable {
p4_frame: Frame,
}
impl InactivePageTable {
pub fn new(frame: Frame,
active_table: &mut ActivePageTable,
temporary_page: &mut TemporaryPage)
-> InactivePageTable {
{
let table = temporary_page.map_table_frame(frame.clone(),
active_table);
// now we are able to zero the table
table.zero();
// set up recursive mapping for the table
table[511].set(frame.clone(), PRESENT | WRITABLE);
}
temporary_page.unmap(active_table);
InactivePageTable { p4_frame: frame }
}
}
pub fn remap_the_kernel<A>(allocator: &mut A, boot_info: &BootInformation)
where A: FrameAllocator
{
let mut temporary_page = TemporaryPage::new(Page { number: 0xcafebabe },
allocator);
let mut active_table = unsafe { ActivePageTable::new() };
let mut new_table = {
let frame = allocator.allocate_frame().expect("no more frames");
InactivePageTable::new(frame, &mut active_table, &mut temporary_page)
};
active_table.with(&mut new_table, &mut temporary_page, |mapper| {
let elf_sections_tag = boot_info.elf_sections_tag()
.expect("Memory map tag required");
for section in elf_sections_tag.sections() {
use self::entry::WRITABLE;
if !section.is_allocated() {
// section is not loaded to memory
continue;
}
assert!(section.start_address() % PAGE_SIZE == 0,
"sections need to be page aligned");
println!("mapping section at addr: {:#x}, size: {:#x}",
section.addr, section.size);
let flags = EntryFlags::from_elf_section_flags(section);
let start_frame = Frame::containing_address(section.start_address());
let end_frame = Frame::containing_address(section.end_address() - 1);
for frame in Frame::range_inclusive(start_frame, end_frame) {
mapper.identity_map(frame, flags, allocator);
}
}
// identity map the VGA text buffer
let vga_buffer_frame = Frame::containing_address(0xb8000);
mapper.identity_map(vga_buffer_frame, WRITABLE, allocator);
// identity map the multiboot info structure
let multiboot_start = Frame::containing_address(boot_info.start_address());
let multiboot_end = Frame::containing_address(boot_info.end_address() - 1);
for frame in Frame::range_inclusive(multiboot_start, multiboot_end) {
mapper.identity_map(frame, PRESENT, allocator);
}
});
let old_table = active_table.switch(new_table);
println!("NEW TABLE!!!");
// turn the old p4 page into a guard page
let old_p4_page = Page::containing_address(
old_table.p4_frame.start_address()
);
active_table.unmap(old_p4_page, allocator);
println!("guard page at {:#x}", old_p4_page.start_address());
}

View File

@@ -0,0 +1,79 @@
use super::{Page, ActivePageTable, VirtualAddress};
use super::table::{Table, Level1};
use memory::{Frame, FrameAllocator};
pub struct TemporaryPage {
page: Page,
allocator: TinyAllocator,
}
impl TemporaryPage {
pub fn new<A>(page: Page, allocator: &mut A) -> TemporaryPage
where A: FrameAllocator
{
TemporaryPage {
page: page,
allocator: TinyAllocator::new(allocator),
}
}
/// Maps the temporary page to the given frame in the active table.
/// Returns the start address of the temporary page.
pub fn map(&mut self, frame: Frame, active_table: &mut ActivePageTable)
-> VirtualAddress
{
use super::entry::WRITABLE;
assert!(active_table.translate_page(self.page).is_none(),
"temporary page is already mapped");
active_table.map_to(self.page, frame, WRITABLE, &mut self.allocator);
self.page.start_address()
}
/// Unmaps the temporary page in the active table.
pub fn unmap(&mut self, active_table: &mut ActivePageTable) {
active_table.unmap(self.page, &mut self.allocator)
}
/// Maps the temporary page to the given page table frame in the active
/// table. Returns a reference to the now mapped table.
pub fn map_table_frame(&mut self,
frame: Frame,
active_table: &mut ActivePageTable)
-> &mut Table<Level1> {
unsafe { &mut *(self.map(frame, active_table) as *mut Table<Level1>) }
}
}
struct TinyAllocator([Option<Frame>; 3]);
impl TinyAllocator {
fn new<A>(allocator: &mut A) -> TinyAllocator
where A: FrameAllocator
{
let mut f = || allocator.allocate_frame();
let frames = [f(), f(), f()];
TinyAllocator(frames)
}
}
impl FrameAllocator for TinyAllocator {
fn allocate_frame(&mut self) -> Option<Frame> {
for frame_option in &mut self.0 {
if frame_option.is_some() {
return frame_option.take();
}
}
None
}
fn deallocate_frame(&mut self, frame: Frame) {
for frame_option in &mut self.0 {
if frame_option.is_none() {
*frame_option = Some(frame);
return;
}
}
panic!("Tiny allocator can hold only 3 frames.");
}
}