Files
blog_os/src/memory/paging/mod.rs
Philipp Oppermann ef786e1fe8 Update post and code
2016-12-30 14:52:04 +01:00

237 lines
6.8 KiB
Rust

// Copyright 2016 Philipp Oppermann. See the README.md
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::entry::*;
use memory::{PAGE_SIZE, Frame, FrameAllocator};
use self::temporary_page::TemporaryPage;
pub use self::mapper::Mapper;
use core::ops::{Deref, DerefMut, Add};
use multiboot2::BootInformation;
mod entry;
mod table;
mod temporary_page;
mod mapper;
const ENTRY_COUNT: usize = 512;
pub type PhysicalAddress = usize;
pub type VirtualAddress = usize;
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct Page {
number: usize,
}
impl Page {
pub fn containing_address(address: VirtualAddress) -> Page {
assert!(address < 0x0000_8000_0000_0000 || address >= 0xffff_8000_0000_0000,
"invalid address: 0x{:x}",
address);
Page { number: address / PAGE_SIZE }
}
pub fn start_address(&self) -> usize {
self.number * PAGE_SIZE
}
fn p4_index(&self) -> usize {
(self.number >> 27) & 0o777
}
fn p3_index(&self) -> usize {
(self.number >> 18) & 0o777
}
fn p2_index(&self) -> usize {
(self.number >> 9) & 0o777
}
fn p1_index(&self) -> usize {
(self.number >> 0) & 0o777
}
pub fn range_inclusive(start: Page, end: Page) -> PageIter {
PageIter {
start: start,
end: end,
}
}
}
impl Add<usize> for Page {
type Output = Page;
fn add(self, rhs: usize) -> Page {
Page { number: self.number + rhs }
}
}
#[derive(Debug, Clone)]
pub struct PageIter {
start: Page,
end: Page,
}
impl Iterator for PageIter {
type Item = Page;
fn next(&mut self) -> Option<Page> {
if self.start <= self.end {
let page = self.start;
self.start.number += 1;
Some(page)
} else {
None
}
}
}
pub struct ActivePageTable {
mapper: Mapper,
}
impl Deref for ActivePageTable {
type Target = Mapper;
fn deref(&self) -> &Mapper {
&self.mapper
}
}
impl DerefMut for ActivePageTable {
fn deref_mut(&mut self) -> &mut Mapper {
&mut self.mapper
}
}
impl ActivePageTable {
unsafe fn new() -> ActivePageTable {
ActivePageTable { mapper: Mapper::new() }
}
pub fn with<F>(&mut self,
table: &mut InactivePageTable,
temporary_page: &mut temporary_page::TemporaryPage, // new
f: F)
where F: FnOnce(&mut Mapper)
{
use x86::shared::{control_regs, tlb};
let flush_tlb = || unsafe { tlb::flush_all() };
{
let backup = Frame::containing_address(unsafe { control_regs::cr3() } as usize);
// map temporary_page to current p4 table
let p4_table = temporary_page.map_table_frame(backup.clone(), self);
// overwrite recursive mapping
self.p4_mut()[511].set(table.p4_frame.clone(), PRESENT | WRITABLE);
flush_tlb();
// execute f in the new context
f(self);
// restore recursive mapping to original p4 table
p4_table[511].set(backup, PRESENT | WRITABLE);
flush_tlb();
}
temporary_page.unmap(self);
}
pub fn switch(&mut self, new_table: InactivePageTable) -> InactivePageTable {
use x86::shared::control_regs;
let old_table = InactivePageTable {
p4_frame: Frame::containing_address(unsafe { control_regs::cr3() } as usize),
};
unsafe {
control_regs::cr3_write(new_table.p4_frame.start_address());
}
old_table
}
}
pub struct InactivePageTable {
p4_frame: Frame,
}
impl InactivePageTable {
pub fn new(frame: Frame,
active_table: &mut ActivePageTable,
temporary_page: &mut TemporaryPage)
-> InactivePageTable {
{
let table = temporary_page.map_table_frame(frame.clone(), active_table);
table.zero();
table[511].set(frame.clone(), PRESENT | WRITABLE);
}
temporary_page.unmap(active_table);
InactivePageTable { p4_frame: frame }
}
}
pub fn remap_the_kernel<A>(allocator: &mut A, boot_info: &BootInformation) -> ActivePageTable
where A: FrameAllocator
{
let mut temporary_page = TemporaryPage::new(Page { number: 0xcafebabe }, allocator);
let mut active_table = unsafe { ActivePageTable::new() };
let mut new_table = {
let frame = allocator.allocate_frame().expect("no more frames");
InactivePageTable::new(frame, &mut active_table, &mut temporary_page)
};
active_table.with(&mut new_table, &mut temporary_page, |mapper| {
let elf_sections_tag = boot_info.elf_sections_tag()
.expect("Memory map tag required");
// identity map the allocated kernel sections
for section in elf_sections_tag.sections() {
if !section.is_allocated() {
// section is not loaded to memory
continue;
}
assert!(section.addr as usize % PAGE_SIZE == 0,
"sections need to be page aligned");
println!("mapping section at addr: {:#x}, size: {:#x}",
section.addr,
section.size);
let flags = EntryFlags::from_elf_section_flags(section);
let start_frame = Frame::containing_address(section.start_address());
let end_frame = Frame::containing_address(section.end_address() - 1);
for frame in Frame::range_inclusive(start_frame, end_frame) {
mapper.identity_map(frame, flags, allocator);
}
}
// identity map the VGA text buffer
let vga_buffer_frame = Frame::containing_address(0xb8000);
mapper.identity_map(vga_buffer_frame, WRITABLE, allocator);
// identity map the multiboot info structure
let multiboot_start = Frame::containing_address(boot_info.start_address());
let multiboot_end = Frame::containing_address(boot_info.end_address() - 1);
for frame in Frame::range_inclusive(multiboot_start, multiboot_end) {
mapper.identity_map(frame, PRESENT, allocator);
}
});
let old_table = active_table.switch(new_table);
println!("NEW TABLE!!!");
let old_p4_page = Page::containing_address(old_table.p4_frame.start_address());
active_table.unmap(old_p4_page, allocator);
println!("guard page at {:#x}", old_p4_page.start_address());
active_table
}