Files
blog_os/blog/content/edition-2/posts/11-allocator-designs/index.zh-CN.md
2025-06-24 21:04:56 +08:00

99 KiB
Raw Blame History

+++ title = "分配器设计" weight = 11 path = "zh-CN/allocator-designs" date = 2020-01-20

[extra] chapter = "Memory Management"

Please update this when updating the translation

translation_based_on_commit = "4e512846617109334af6ae9b1ed03e223cf4b1d0"

GitHub usernames of the people that translated this post

translators = ["ttttyy"]

GitHub usernames of the people that contributed to this translation

translation_contributors = [] +++

这篇文章讲解了如何从零开始实现堆分配器。文中介绍并探讨了三种不同的分配器设计包括bump分配器链表分配器和固定大小块分配器。对于这三种设计我们都将构建一个基础实现供我们的内核使用。

This blog is openly developed on GitHub. If you have any problems or questions, please open an issue there. You can also leave comments at the bottom. The complete source code for this post can be found in the post-11 branch. 这个系列的 blog 在GitHub上开放开发,如果你有任何问题,请在这里开一个 issue 来讨论。当然你也可以在底部留言。你可以在post-11找到这篇文章的完整源码。

介绍

上一篇文章中,我们为内核添加了基本的堆分配支持。为此,我们在页表中创建了一个新的内存区域,并使用linked_list_allocator crate来管理它。现在我们有了一个可以工作的堆但是我们将大部分工作留给了分配器crate而没有试着理解它是如何工作的。

在本文中我们将展示如何从零开始实现我们自己的堆分配器而不是依赖于一个现有的分配器crate。我们将讨论不同的分配器设计包括一个简化的 bump 分配器 和一个基础的 固定大小块分配器 ,并且使用这些知识实现一个性能更好的分配器(相比于linked_list_allocator crate

设计目标

分配器的职责就是管理可用的堆内存。它需要在alloc调用中返回未使用的内存,跟踪被dealloc方法释放的内存,以便能再次使用。更重要的是,它必须永远不重复分配已在其他地方使用的内存,因为这会导致未定义的行为。

除了正确性以外,还有许多次要的设计目标。举例来说,分配器应该高效利用可用的内存,并且尽量减少碎片化。此外它还应适用于并发应用程序并且可以扩展到任意数量的处理器。为了达到最佳性能它甚至可以针对CPU缓存优化内存布局以提高缓存局部性并避免假共享

These requirements can make good allocators very complex. For example, jemalloc has over 30.000 lines of code. This complexity is often undesired in kernel code, where a single bug can lead to severe security vulnerabilities. Fortunately, the allocation patterns of kernel code are often much simpler compared to userspace code, so that relatively simple allocator designs often suffice. 这些需求使得优秀的分配器变得非常复杂。例如,jemalloc有超过30,000行代码。这种复杂性不是内核代码所期望的因为一个简单的bug就能导致严重的安全漏洞。幸运的是内核代码的内存分配模式通常比用户空间代码简单得多所以相对简单的分配器设计通常就足够了。

接下来,我们将展示三种可能的内存分配器设计并且解释它们的优缺点。

Bump Allocator

Bump分配器

最简单的分配器设计是 bump分配器(也被称为 栈分配器 )。它线性分配内存,并且只跟踪已分配的字节数量和分配的次数。它只适用于非常特殊的使用场景,因为他有一个严重的限制:它只能一次性释放全部内存。

设计思想

bump分配器的设计思想是通过增加"bumping")一个指向未使用内存起点的 next 变量的值来线性分配内存。一开始,next指向堆的起始地址。每次分配内存时,next的值都会增加相应的分配大小,从而始终指向已使用和未使用内存之间的边界。

堆内存区域在三个时间点的状态:
1:一次分配发生在堆的起始位置,next 指针指向它的末尾。
2:在第一次分配之后,又添加了第二次分配,next 指针指向第二次分配的末尾。
3:在第二次分配之后,又添加了第三次分配,next 指针指向第三次分配的末尾。

next 指针只朝一个方向移动,因此同一块内存区域永远不会被重复分配。当它到达堆的末尾时,不再有内存可以分配,下一次分配将导致内存不足错误。

一个bump分配器通常会配合一个分配计数器来实现每次调用 alloc 时增加1每次调用 dealloc 减少1。当分配计数器为零时这意味着堆上的所有分配都已被释放。在这种情况下next 指针可以被重置为堆的起始地址,使整个堆内存再次可用于分配。

实现

我们从声明一个新的 allocator::bump 子模块开始实现:

// in src/allocator.rs

pub mod bump;

The content of the submodule lives in a new src/allocator/bump.rs file, which we create with the following content: 子模块的内容位于一个新的 src/allocator/bump.rs 文件中,我们将使用下面的内容创建它:

// in src/allocator/bump.rs

pub struct BumpAllocator {
    heap_start: usize,
    heap_end: usize,
    next: usize,
    allocations: usize,
}

impl BumpAllocator {
    /// 创建一个新的空的bump分配器
    pub const fn new() -> Self {
        BumpAllocator {
            heap_start: 0,
            heap_end: 0,
            next: 0,
            allocations: 0,
        }
    }

    /// 用给定的堆边界初始化bump分配器
    /// 这个方法是不安全的,因为调用者必须确保给定
    /// 的内存范围没有被使用。同样,这个方法只能被调用一次。

    pub unsafe fn init(&mut self, heap_start: usize, heap_size: usize) {
        self.heap_start = heap_start;
        self.heap_end = heap_start + heap_size;
        self.next = heap_start;
    }
}

heap_startheap_end 字段跟踪堆内存区域的下界和上界。调用者需要保证这些地址是可用的,否则分配器将返回无效的内存。因此,init 函数需要声明为 unsafe

next 字段的作用是始终指向堆的第一个未使用字节,即下一次分配的起始地址。在 init 函数中,它被设置为heap_start ,因为开始时整个堆都是未使用的。每次分配时,这个字段都会增加相应的分配大小(“bumped”),以确保我们不会两次返回相同的内存区域。

allocations 字段是一个用于记录活动分配数的简单计数器其目标是在释放最后一次分配后重置分配器。它的初始值为0。

我们选择创建一个单独的 init 函数,而不是直接在 new 中执行初始化,是为了保持接口与 linked_list_allocator crate 提供的分配器接口一致。这样,分配器就可以在不额外更改代码的情况下进行切换。

实现GlobalAlloc

正如上篇文章所述,所有的堆分配器都必须实现 GlobalAlloc 特征,其定义如下:

pub unsafe trait GlobalAlloc {
    unsafe fn alloc(&self, layout: Layout) -> *mut u8;
    unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout);

    unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 { ... }
    unsafe fn realloc(
        &self,
        ptr: *mut u8,
        layout: Layout,
        new_size: usize
    ) -> *mut u8 { ... }
}

只有 allocdealloc 方法是必须实现的;其他两个方法已有默认实现,可以省略。

第一次实现尝试

让我们试着为我们的 BumpAllocator 实现 alloc 方法:

// in src/allocator/bump.rs

use alloc::alloc::{GlobalAlloc, Layout};

unsafe impl GlobalAlloc for BumpAllocator {
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        // TODO 内存对齐和边界检查
        let alloc_start = self.next;
        self.next = alloc_start + layout.size();
        self.allocations += 1;
        alloc_start as *mut u8
    }

    unsafe fn dealloc(&self, _ptr: *mut u8, _layout: Layout) {
        todo!();
    }
}

首先,我们使用 next 字段作为分配的起始地址。然后我们将 next 字段更新为分配的结束地址,即堆上的下一个未使用地址。在返回分配起始地址的 *mut u8 指针之前,我们将 allocations 计数器加一。

注意,我们目前没有执行任何边界检查或是对齐调整,所以这个实现目前是不安全的。但这对我们的实现来说并不重要,因为它会编译失败并报告错误:

error[E0594]: cannot assign to `self.next` which is behind a `&` reference
  --> src/allocator/bump.rs:29:9
   |
29 |         self.next = alloc_start + layout.size();
   |         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `self` is a `&` reference, so the data it refers to cannot be written

(同样的错误也会发生在 self.allocations += 1 行。这里为了简洁起见省略了它。)

出现这个错误是因为 GlobalAlloc 特征的 allocdealloc 方法只能在一个不可变的 &self 引用上操作,因此,更新 nextallocations 字段是不可能的。问题在于,每次分配时更新 next 字段正是bump分配器的核心机制。

GlobalAlloc 和可变性

在我们为可变性问题寻找可能的解决方案前,让我们先理解一下为什么 GlobalAlloc 特征的方法是用 &self 参数定义的:就像我们在上一篇文章中看到的那样,全局堆分配器是通过向实现 GlobalAlloc 特征的 static 变量上添加 #[global_allocator] 属性来定义的。静态变量是 Rust 中的不可变变量,所以无法在静态分配器上调用接受 &mut self 的方法。因此,GlobalAlloc 特征的所有方法都只接受不可变的 &self 引用。

幸运的是,有一种方法能从 &self 引用中获取一个 &mut self 引用:我们可以通过将分配器封装在 spin::Mutex 自旋锁中来实现同步内部可变性。这个类型提供的 lock 方法能够执行互斥,从而安全地将 &self 引用转换为 &mut self 引用。我们已经在我们的内核中多次使用了这个封装器类型,例如用于 VGA 文本缓冲区

Locked 封装类型

spin::Mutex封装类型的帮助下我们可以为我们的bump分配器实现 GlobalAlloc 特征。诀窍是不直接在 BumpAllocator 上实现该特征,而是在 spin::Mutex<BumpAllocator> 类型实现。

unsafe impl GlobalAlloc for spin::Mutex<BumpAllocator> {}

不幸的是这样还是不行因为Rust编译器不允许为定义在其他crates中的类型实现特征。

error[E0117]: only traits defined in the current crate can be implemented for arbitrary types
  --> src/allocator/bump.rs:28:1
   |
28 | unsafe impl GlobalAlloc for spin::Mutex<BumpAllocator> {
   | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^--------------------------
   | |                           |
   | |                           `spin::mutex::Mutex` is not defined in the current crate
   | impl doesn't use only types from inside the current crate
   |
   = note: define and implement a trait or new type instead

To fix this, we need to create our own wrapper type around spin::Mutex: 为了解决这个问题,我们需要围绕 spin::Mutex 实现我们自己的包装器类型。

// in src/allocator.rs

/// 允许特征实现的围绕 `spin::Mutex` 类型的封装器。
pub struct Locked<A> {
    inner: spin::Mutex<A>,
}

impl<A> Locked<A> {
    pub const fn new(inner: A) -> Self {
        Locked {
            inner: spin::Mutex::new(inner),
        }
    }

    pub fn lock(&self) -> spin::MutexGuard<A> {
        self.inner.lock()
    }
}

这个类型是围绕 spin::Mutex<A> 的泛型封装器。它不施加任何对封装类型 A 的限制,所以它可以用来封装所有种类的类型,而不仅仅是分配器。它提供了一个简单的 new 构造函数,用于封装给定的值。为了方便起见,它还提供了一个 lock 函数,用于调用封装的 Mutex 上的 lock 。由于 Locked 类型对于其他分配器实现也很有帮助,所以我们将它放在父 allocator 模块中。

Locked<BumpAllocator> 类型的实现

Locked 类型已在我们自己的crate中定义而不是直接使用 spin::Mutex。因此可以使用它来为我们的bump分配器实现 GlobalAlloc 特征。完整的实现如下:

// in src/allocator/bump.rs

use super::{align_up, Locked};
use alloc::alloc::{GlobalAlloc, Layout};
use core::ptr;

unsafe impl GlobalAlloc for Locked<BumpAllocator> {
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        let mut bump = self.lock(); // 获取可变引用

        let alloc_start = align_up(bump.next, layout.align());
        let alloc_end = match alloc_start.checked_add(layout.size()) {
            Some(end) => end,
            None => return ptr::null_mut(),
        };

        if alloc_end > bump.heap_end {
            ptr::null_mut() // 内存不足
        } else {
            bump.next = alloc_end;
            bump.allocations += 1;
            alloc_start as *mut u8
        }
    }

    unsafe fn dealloc(&self, _ptr: *mut u8, _layout: Layout) {
        let mut bump = self.lock(); // 获取可变引用

        bump.allocations -= 1;
        if bump.allocations == 0 {
            bump.next = bump.heap_start;
        }
    }
}

allocdealloc 的第一步都是调用Mutex::lock方法来通过 inner 字段获取封装类型的可变引用。封装实例在方法结束前保持锁定,因此不会在多线程上下文中发生数据竞争(我们很快会添加线程支持)。

与之前的原型相比,现在的 alloc 实现遵循了对齐要求并执行了边界检查,确保分配的内存区域在堆内存区域内。第一步是将 next 地址向上对齐到 Layout 参数指定的对齐值。稍后展示 align_up 函数的实现。接着,我们将所请求的分配大小加到 alloc_start 地址上,得到该次分配的结束地址。为了防止在大内存分配时发生整数溢出,我们使用了 checked_add 方法。如果发生溢出或分配结束地址大于堆结束地址,我们就返回一个空指针以表示内存不足情况。否则,我们更新 next 地址并像之前一样增加 allocations 计数器。最后,我们返回转换为 *mut u8 指针 alloc_start 地址。

dealloc 函数忽略了传入的指针和 Layout 参数。它仅仅是将 allocations 计数器减一。如果计数器再次变为 0 ,则意味着所有分配都已再次释放。在这种情况下,它将 next 地址重置为 heap_start 地址,使整个堆内存重新可用。

地址对齐

align_up 函数足够通用,因此我们可以将它放到父 allocator 模块中。其基本实现如下:

// in src/allocator.rs

/// 向上对齐给定地址 `addr` 到对齐值 `align`。
fn align_up(addr: usize, align: usize) -> usize {
    let remainder = addr % align;
    if remainder == 0 {
        addr // 地址已经对齐
    } else {
        addr - remainder + align
    }
}

这个函数首先计算 addr 除以 align余数。如果余数为 0 ,则地址已经与给定的对齐值对齐。否则,我们通过减去余数(以便余数为 0)并加上对齐值(以便地址不小于原始地址)来对齐地址。

注意这不是实现此函数最高效的方法,一个更快的实现如下所示:

/// 向上对齐给定地址 `addr` 到对齐值 `align` 。 
///
/// 要求对齐值是2的幂
fn align_up(addr: usize, align: usize) -> usize {
    (addr + align - 1) & !(align - 1)
}

此方法要求 align 必须是2的幂通过 GlobalAlloc 特征(及其 Layout 参数)可以保证这一点。这使得我们可以创建位掩码来高效地对齐地址。为了理解其工作原理,我们从表达式的右侧逐步解析:

  • 因为 align 是2的幂它的二进制表示仅有一个比特位为1例如0b000100000)。这意味着 align - 1 在该比特位下的所有低位均为1例如0b00011111)。
  • 通过 ! 运算符执行按位取反操作, 我们得到一个数,其除了低于 align的比特位为0外其余位均为1。
  • 通过将给定地址和 !(align - 1) 执行按位与操作,我们将该地址 向下 对齐。这是通过将所有低于 align 的比特位清除来实现的。
  • 因为我们想要向上对齐而不是向下对齐,在执行按位 AND 操作之前,先将 addr 增加 align - 1 的值。这种方式下,已对齐的地址保持不变,而未对齐的地址将被对齐到下一个对齐边界。

你选择使用哪一个变体,这取决于你。这两种方法计算的结果相同,只是使用不同的方法。

用法

为了使用我们的bump分配器我们需要更新 allocator.rs 中的 ALLOCATOR 静态变量:

// in src/allocator.rs

use bump::BumpAllocator;

#[global_allocator]
static ALLOCATOR: Locked<BumpAllocator> = Locked::new(BumpAllocator::new());

我们需要将 BumpAllocator::newLocked::new 定义为 const 函数。如果它们是一般的函数,将会发生编译错误,因为一个 static 变量的初始化表达式会在编译时求值。

我们不需要修改我们的 init_heap 函数中的 ALLOCATOR.lock().init(HEAP_START, HEAP_SIZE) 调用因为bump分配器提供的接口与 linked_list_allocator 提供的接口是一致的。

现在我们的内核使用了我们的bump分配器一切正常包括我们在上一篇文章中创建的 heap_allocation tests

> cargo test --test heap_allocation
[…]
Running 3 tests
simple_allocation... [ok]
large_vec... [ok]
many_boxes... [ok]

讨论

bump分配最大的优势就是它非常快。相比其他的需要主动地寻找合适的内存块并且在 allocdealloc 时执行各种簿记工作的分配器设计见下文bump分配器可以对其进行优化使其仅降至仅有几条汇编指令。这使得bump分配器在优化分配性能时非常有用例如当创建一个虚拟 DOM 库时。

bump分配器通常不被用作全局分配器但bump分配的原理通常以arena分配的形式应用其核心思想是将独立的小块内存分配操作批量合并处理以提高性能。Rust 的一个arena分配器的例子包含在 toolshed crate 中。

bump分配器的缺点

bump分配器的主要限制是它只能在所有已分配的内存都已释放后才能重用已释放的内存。这意味着单个长期存在的分配就可以阻止内存重用。我们可以通过添加 many_boxes 测试的变体来看到这一点:

// in tests/heap_allocation.rs

#[test_case]
fn many_boxes_long_lived() {
    let long_lived = Box::new(1); // 新的
    for i in 0..HEAP_SIZE {
        let x = Box::new(i);
        assert_eq!(*x, i);
    }
    assert_eq!(*long_lived, 1); // 新的
}

many_boxes 测试类似,此测试创建了大量的分配,以触发内存不足错误(如果分配器没有重用空闲的内存)。此外,该测试还创建了一个 long_lived 分配,它的生命周期贯穿整个循环执行过程。

当我们运行新的测试时,我们会看到它确实失败了:

> cargo test --test heap_allocation
Running 4 tests
simple_allocation... [ok]
large_vec... [ok]
many_boxes... [ok]
many_boxes_long_lived... [failed]

Error: panicked at 'allocation error: Layout { size_: 8, align_: 8 }', src/lib.rs:86:5

让我们试着理解为什么会发生此错误:首先,long_lived 分配在堆的起始位置被创建,然后 allocations 计数器增加1。对于在循环中的每一次迭代一个分配会创建并在下一次迭代开始前被直接释放。这意味着 allocations 计数器在迭代的一开始短暂地增加为2并在迭代结束时减少为1。现在问题是bump分配器只有在 所有 分配均被释放之后才能重用内存,例如,当 allocations 计数器变为0时。因为这在循环结束前不会发生每次循环迭代分配一个新的内存区域在一定次数迭代后将导致内存不足错误。

解决测试问题?

有两个潜在的技巧可以用来解决我们bump分配器的测试问题

  • 我们可以更新 dealloc 方法,通过比较其结束地址与 next 指针来检查释放的分配是否与 alloc 返回的最后一个分配的结束地址相等。在相等的情况下,我们可以安全地将 next 指针恢复为已释放分配的起始地址。这样,每次循环迭代都可以重用相同的内存块。

  • 我们可以添加一个 alloc_back 方法,该方法使用一个额外的 next_back 字段从堆的 末尾 分配内存。然后我们可以为所有长生命周期的分配手动调用此分配方法,从而在堆上实现短生命周期和长生命周期的分配的分离。注意这种分离只有在清楚地知道每个分配会存活多久的前提下才能正常工作。此方法的另一个缺陷是手动进行内存分配是繁琐且不安全的。

虽然这两种方法都可以解决这个测试问题,但因为它们都只能在非常特殊的场景下重用内存,它们都不是通用的解决方案。问题是:存在一种通用的解决方案来重用 所有 已释放的内存吗?

重用所有已释放的内存?

上一篇文章 中我们知道,分配可以存活任意长的时间,也可以以任意顺序被释放。这意味着我们需要跟踪一个可能无界的不连续的未使用内存区域,如下图所示:

这张图展示了堆随时间变化的情况。一开始,整个堆都是未使用的,next 地址等于 heap_start第一行。然后第一次分配发生第2行。在第3行分配了一个新的内存块并释放了第一个内存块。在第4行添加了更多的分配。其中半数分配是非常短暂的在第5行已经被释放此时还新增了一个新的分配。

第五行展示了根本性问题我们有5个大小不同的未使用内存区域next 指针只能指向最后一个区域的开头。虽然我们可以在这个例子中使用一个大小为4的数组来存储其他未使用内存区域的起始地址和大小但这不是一个通用的解决方案因为我们可以轻松创建一个使用8、16或1000个未使用内存区域的示例。

通常,当存在潜在无限数量的元素时,我们可以使用一个堆分配集合。这在我们的场景中是不可能的,因为堆分配器不能依赖于它自身(会造成无限递归或死锁)。因此我们需要寻找一种不同的解决方案。

链表分配器

在实现分配器时一个常用的跟踪任意数量的未使用内存区域的技巧是将未使用的内存区域本身用作后备存储。这利用了未使用区域仍然映射到虚拟地址并由物理帧支持,但存储的信息不再被需要这一事实。通过将有关已释放区域的信息存储在区域中,我们可以在不需要额外内存的情况下跟踪无限数量的已释放区域。

最常见的实现方法是在已释放的内存中构造一个单链表,每一个节点都是一个已释放的内存区域:

每个链表节点有两个字段:内存区域的大小和指向下一个未使用内存区域的指针。通过这种方法,我们只需要一个指向第一个未使用区域(称为 head )的指针就能跟踪所有未使用的区域而不管它们的数量多少。最终形成的数据结构通常被称为 free list

你能从这个名字中猜到,这就是 linked_list_allocator crate 中用到的技术。使用这种技术的分配器也常被称为 池分配器

实现

接下来,我们会创建我们自己的简单的 LinkedListAllocator 类型,用于跟踪已释放的内存区域。本部分内容在后续章节中非必需,所以你可以根据自己的喜好跳过实现细节。

分配器类型

We start by creating a private ListNode struct in a new allocator::linked_list submodule: 我们首先在一个新的 allocator::linked_list 子模块中创建一个私有的 ListNode 结构体:

// in src/allocator.rs

pub mod linked_list;
// in src/allocator/linked_list.rs

struct ListNode {
    size: usize,
    next: Option<&'static mut ListNode>,
}

正如图示所示,链表节点包含一个 size 字段和一个指向下一个节点的可选的指针,用 Option<&'static mut ListNode> 类型表示。&'static mut 类型的语义上描述了一个由指持有的所有权对象。本质上,它是一个缺少在作用域结束时释放对象的析构函数的 Box智能指针。

我们为 ListNode 实现以下方法:

// in src/allocator/linked_list.rs

impl ListNode {
    const fn new(size: usize) -> Self {
        ListNode { size, next: None }
    }

    fn start_addr(&self) -> usize {
        self as *const Self as usize
    }

    fn end_addr(&self) -> usize {
        self.start_addr() + self.size
    }
}

此类型包含一个名为 new 的构造函数,以及用于计算代表区域起始地址和结束地址的方法。我们将 new 函数定义为常量函数,这一特性在后续构建静态链表分配器时是必需的。

通过将 ListNode 结构体作为基础组件,我们现在可以创建 LinkedListAllocator 结构体了:

// in src/allocator/linked_list.rs

pub struct LinkedListAllocator {
    head: ListNode,
}

impl LinkedListAllocator {
    /// 创建一个空的LinkedListAllocator。
    pub const fn new() -> Self {
        Self {
            head: ListNode::new(0),
        }
    }

    /// 用给定的堆边界初始化分配器
    ///
    /// 这个函数是不安全的,因为调用者必须保证给定的堆边界是有效的并且堆是未使用的。
    /// 此方法只能调用一次
    pub unsafe fn init(&mut self, heap_start: usize, heap_size: usize) {
        unsafe {
            self.add_free_region(heap_start, heap_size);
        }
    }

    /// 将给定的内存区域添加到链表前端。
    unsafe fn add_free_region(&mut self, addr: usize, size: usize) {
        todo!();
    }
}

此结构体包含一个指向第一个堆区域的 head 节点。我们只关注 next 指针的值,所以我们在 ListNode::new 函数中将 size 设置为0。将 head 定义为 ListNode 类型而不是 &'static mut ListNode 类型的优势在于,alloc 方法的实现会更简单。

和bump分配器一样new 函数并未用堆边界初始化分配器。除了保持API兼容性外这是因为初始化操作需要将链表节点写入堆内存而这只能在运行时发生。但是new 函数必须被定义为可以在编译期求值的常量函数,因为该函数将用于初始化 ALLOCATOR 静态变量。出于这个原因,我们再次提供一个独立的非常量 init 方法。

init 方法使用一个 add_free_region 方法,该方法的实现会在稍后展示。现在,我们用 todo! 宏提供一个总是会触发panic的占位符实现。

add_free_region 方法

add_free_region 方法提供链表的基础 push 操作。我们目前只从 init 方法调用它,但它也会是我们 dealloc 实现的核心方法。记住,当再次释放已分配的内存区域时,会调用 dealloc 方法。为了跟踪此已释放的内存区域,我们希望将其推送到链表中。

add_free_region 方法的实现如下:

// in src/allocator/linked_list.rs

use super::align_up;
use core::mem;

impl LinkedListAllocator {
    /// 将给定的内存区域添加到链表前端。
    unsafe fn add_free_region(&mut self, addr: usize, size: usize) {
        /// 确保给定的内存区域足以存储 ListNode
        assert_eq!(align_up(addr, mem::align_of::<ListNode>()), addr);
        assert!(size >= mem::size_of::<ListNode>());

        // 创建一个新的 ListNode 并将其添加到链表前端
        let mut node = ListNode::new(size);
        node.next = self.head.next.take();
        let node_ptr = addr as *mut ListNode;
        unsafe {
            node_ptr.write(node);
            self.head.next = Some(&mut *node_ptr)
        }
    }
}

此方法接受一个内存区域的地址和大小作为参数并且将它添加到链表前端。首先,它会确保给定的内存区域是否满足存储 ListNode 的所需的最小大小和对齐要求。然后,它会通过以下步骤创建一个新的节点并将其插入链表中:

步骤0展示了调用 add_free_region 方法之前的堆内存状态。在步骤1中该方法以图中标记为 freed 的内存区域作为参数被调用。在初始检查之后,方法会在栈上创建一个新的 node,其大小与已释放的内存区域相同。随后,它使用Option::take方法将 nodenext 指针设置为当前的 head 指针,从而将 head 指针重置为 None

步骤2中该方法通过 write 方法将这个新创建的 node 写入在空闲内存区域的开始部分。然后,它将 head 指针指向这个新节点。结果指针结构看起来有点混乱,因为总是将空闲区域插入到列表的开头,但如果我们跟随着指针,我们会看到每个空闲区域仍然可以从 head 指针到达。

find_region 方法

链表的第二个基础操作就是在链表中找到一个节点并移除它。这是实现 alloc 方法的中心操作,接下来我们将通过 find_region 方法来实现这个操作。

// in src/allocator/linked_list.rs

impl LinkedListAllocator {
    /// 查找给定大小和对齐方式的空闲区域并将其从链表中移除。
    ///
    /// 返回一个包含链表节点和分配内存区域起始地址的元组。
    fn find_region(&mut self, size: usize, align: usize)
        -> Option<(&'static mut ListNode, usize)>
    {
        // 当前链表节点的引用,每次迭代更新
        let mut current = &mut self.head;
        // 在链表中查找合适大小的内存区域
        while let Some(ref mut region) = current.next {
            if let Ok(alloc_start) = Self::alloc_from_region(&region, size, align) {
                // 区域适用于分配 -> 从链表中移除该节点
                let next = region.next.take();
                let ret = Some((current.next.take().unwrap(), alloc_start));
                current.next = next;
                return ret;
            } else {
                // 区域不适用 -> 继续下一个区域
                current = current.next.as_mut().unwrap();
            }
        }
        // 未找到合适的区域
        None
    }
}

The method uses a current variable and a while let loop to iterate over the list elements. At the beginning, current is set to the (dummy) head node. On each iteration, it is then updated to the next field of the current node (in the else block). If the region is suitable for an allocation with the given size and alignment, the region is removed from the list and returned together with the alloc_start address. 此方法使用一个 current 变量和一个 [while let 循环]来遍历链表元素。在开始时,current 被设置为(虚拟)head 节点。在每次迭代中,它都会被更新为当前节点的 next 字段(在 else 块中)。如果区域适用于给定大小和对齐方式的分配,该区域会从链表中移除并与 alloc_start 地址一起返回。

When the current.next pointer becomes None, the loop exits. This means we iterated over the whole list but found no region suitable for an allocation. In that case, we return None. Whether a region is suitable is checked by the alloc_from_region function, whose implementation will be shown in a moment. 当 current.next 指针变成 None 时,循环退出。这意味着我们遍历了整个链表,但没有找到合适的区域进行分配。在这种情况下,我们返回 None。区域是否合适是由 alloc_from_region 函数检查的,它的实现将在稍后展示。

Let's take a more detailed look at how a suitable region is removed from the list: 让我们更详细地看看如何从链表中移除一个合适的区域:

Step 0 shows the situation before any pointer adjustments. The region and current regions and the region.next and current.next pointers are marked in the graphic. In step 1, both the region.next and current.next pointers are reset to None by using the Option::take method. The original pointers are stored in local variables called next and ret. 步骤0展示了指针调整之前的情况。在图中regioncurrent 区域以及 region.nextcurrent.next 指针被标记。在步骤1中通过使用 Option::take 方法将 region.nextcurrent.next 指针都重置为 None。原始指针被存储在名为 nextret 的本地变量中。

In step 2, the current.next pointer is set to the local next pointer, which is the original region.next pointer. The effect is that current now directly points to the region after region, so that region is no longer an element of the linked list. The function then returns the pointer to region stored in the local ret variable. 步骤2中current.next 指针被设置为本地 next 指针,即原始的 region.next 指针。这种效果是 current 现在直接指向 region 之后的区域,因此 region 不再是链表的元素。函数然后返回存储在本地 ret 变量中的指向 region 的指针。

The alloc_from_region Function
alloc_from_region 函数

The alloc_from_region function returns whether a region is suitable for an allocation with a given size and alignment. It is defined like this: alloc_from_region 函数返回一个区域是否适合给定大小和对齐方式的分配。它的定义如下:

// in src/allocator/linked_list.rs

impl LinkedListAllocator {
    /// Try to use the given region for an allocation with given size and
    /// alignment.
    /// 尝试将给定区域用于给定大小和对齐方式的分配。
    ///
    /// Returns the allocation start address on success.
    /// 成功时返回分配内存区域的起始地址。
    fn alloc_from_region(region: &ListNode, size: usize, align: usize)
        -> Result<usize, ()>
    {
        let alloc_start = align_up(region.start_addr(), align);
        let alloc_end = alloc_start.checked_add(size).ok_or(())?;

        if alloc_end > region.end_addr() {
            // region too small
            // 区域太小
            return Err(());
        }

        let excess_size = region.end_addr() - alloc_end;
        if excess_size > 0 && excess_size < mem::size_of::<ListNode>() {
            // rest of region too small to hold a ListNode (required because the
            // allocation splits the region in a used and a free part)
            // 区域剩余部分太小,无法存储 ListNode因为分配将区域分为已用和空闲部分
            return Err(());
        }

        // region suitable for allocation
        // 区域适合分配。
        Ok(alloc_start)
    }
}

First, the function calculates the start and end address of a potential allocation, using the align_up function we defined earlier and the checked_add method. If an overflow occurs or if the end address is behind the end address of the region, the allocation doesn't fit in the region and we return an error. 首先,函数计算潜在分配的起始和结束地址,使用我们之前定义的 align_up 函数和 checked_add 方法。如果发生溢出或如果结束地址超出了区域结束地址,分配就不适合该区域,我们返回一个错误。

The function performs a less obvious check after that. This check is necessary because most of the time an allocation does not fit a suitable region perfectly, so that a part of the region remains usable after the allocation. This part of the region must store its own ListNode after the allocation, so it must be large enough to do so. The check verifies exactly that: either the allocation fits perfectly (excess_size == 0) or the excess size is large enough to store a ListNode. 函数在检查潜在分配是否适合区域之后执行另一个检查。这个检查是必要的,因为大部分时间分配都不适合一个合适的区域,所以在分配之后,该区域的一部分仍然可用。这个部分的区域必须在分配之后存储自己的 ListNode,所以它必须足够大才能这样做。检查确切地验证了这一点:要么分配完全适合(excess_size == 0),要么剩余大小足够大以存储 ListNode

Implementing GlobalAlloc

实现 GlobalAlloc

With the fundamental operations provided by the add_free_region and find_region methods, we can now finally implement the GlobalAlloc trait. As with the bump allocator, we don't implement the trait directly for the LinkedListAllocator but only for a wrapped Locked<LinkedListAllocator>. The Locked wrapper adds interior mutability through a spinlock, which allows us to modify the allocator instance even though the alloc and dealloc methods only take &self references. 有了在 add_free_region and find_region 方法中定义的基础操作,我们终于能实现 GlobalAlloc 特征了。和bump分配器一样我们不会直接实现 GlobalAlloc 特征,而是为 LinkedListAllocator 类型实现一个 Locked 包装器。这个包装器通过自旋锁添加内部可变性,这样我们就可以在不获取 allocdealloc 方法的 &self 引用的情况下修改分配器实例。

有了在 add_free_region and find_region 方法中定义的基础操作,我们终于能实现 GlobalAlloc 特征了。和bump

The implementation looks like this: 实现如下:

// in src/allocator/linked_list.rs

use super::Locked;
use alloc::alloc::{GlobalAlloc, Layout};
use core::ptr;

unsafe impl GlobalAlloc for Locked<LinkedListAllocator> {
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        // perform layout adjustments
        // 执行布局调整
        let (size, align) = LinkedListAllocator::size_align(layout);
        let mut allocator = self.lock();

        if let Some((region, alloc_start)) = allocator.find_region(size, align) {
            let alloc_end = alloc_start.checked_add(size).expect("overflow");
            let excess_size = region.end_addr() - alloc_end;
            if excess_size > 0 {
                unsafe {
                    allocator.add_free_region(alloc_end, excess_size);
                }
            }
            alloc_start as *mut u8
        } else {
            ptr::null_mut()
        }
    }

    unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
        // perform layout adjustments
        // 执行布局调整
        let (size, _) = LinkedListAllocator::size_align(layout);

        unsafe { self.lock().add_free_region(ptr as usize, size) }
    }
}

Let's start with the dealloc method because it is simpler: First, it performs some layout adjustments, which we will explain in a moment. Then, it retrieves a &mut LinkedListAllocator reference by calling the Mutex::lock function on the Locked wrapper. Lastly, it calls the add_free_region function to add the deallocated region to the free list. 让我们从 dealloc 方法开始,因为它更简单:首先,该方法执行布局调整,我们将在稍后解释它。然后,它通过调用 Locked 包装器上的 Mutex::lock 函数获取一个 &mut LinkedListAllocator 引用。最后,它调用 add_free_region 函数将已释放的区域添加到空闲列表中。

The alloc method is a bit more complex. It starts with the same layout adjustments and also calls the Mutex::lock function to receive a mutable allocator reference. Then it uses the find_region method to find a suitable memory region for the allocation and remove it from the list. If this doesn't succeed and None is returned, it returns null_mut to signal an error as there is no suitable memory region. alloc 函数稍有些复杂。它同样从布局调整开始,并且调用 Mutex::lock 函数来获取一个可变的分配器引用。然后,它调用 find_region 方法来查找一个适合分配的内存区域,并从空闲列表中删除该区域。如果此调用失败并返回 None,则该函数返回 null_mut 以表示错误,因为没有合适的内存区域。

In the success case, the find_region method returns a tuple of the suitable region (no longer in the list) and the start address of the allocation. Using alloc_start, the allocation size, and the end address of the region, it calculates the end address of the allocation and the excess size again. If the excess size is not null, it calls add_free_region to add the excess size of the memory region back to the free list. Finally, it returns the alloc_start address casted as a *mut u8 pointer. 分配成功时,find_region 方法返回一个适合分配的内存区域(不再在列表中)和分配起始地址的元组。使用 alloc_start、分配大小和区域结束地址,它再次计算分配结束地址和剩余大小。如果剩余大小不为零,则调用 add_free_region 将内存区域的剩余大小添加回空闲列表。最后,它返回 alloc_start 地址作为 *mut u8 指针。

Layout Adjustments

布局调整

So what are these layout adjustments that we make at the beginning of both alloc and dealloc? They ensure that each allocated block is capable of storing a ListNode. This is important because the memory block is going to be deallocated at some point, where we want to write a ListNode to it. If the block is smaller than a ListNode or does not have the correct alignment, undefined behavior can occur. 我们在 allocdealloc 调用的布局调整究竟时什么呢?它们确保每个已分配的块能存储一个 ListNode 。这是很重要的,因为内存块会在某个时刻被释放,同时我们会在块中写入一个 ListNode 。如果一个块的大小比 ListNode 还要小或这没有正确地对其,将导致未定义的行为。

The layout adjustments are performed by the size_align function, which is defined like this: 定义在 size_align 函数中的布局调整,其定义如下:

// in src/allocator/linked_list.rs

impl LinkedListAllocator {
    /// Adjust the given layout so that the resulting allocated memory
    /// region is also capable of storing a `ListNode`.
    /// 调整给定布局,使结果分配的内存区域也能存储一个 `ListNode` 。
    ///
    /// Returns the adjusted size and alignment as a (size, align) tuple.
    /// 返回调整后的大小和对齐方式的元组。
    fn size_align(layout: Layout) -> (usize, usize) {
        let layout = layout
            .align_to(mem::align_of::<ListNode>())
            .expect("adjusting alignment failed")
            .pad_to_align();
        let size = layout.size().max(mem::size_of::<ListNode>());
        (size, layout.align())
    }
}

First, the function uses the align_to method on the passed Layout to increase the alignment to the alignment of a ListNode if necessary. It then uses the pad_to_align method to round up the size to a multiple of the alignment to ensure that the start address of the next memory block will have the correct alignment for storing a ListNode too. In the second step, it uses the max method to enforce a minimum allocation size of mem::size_of::<ListNode>. This way, the dealloc function can safely write a ListNode to the freed memory block. 首先,该函数使用 align_to 方法增加对齐方式,以确保分配的内存区域也能存储一个 ListNode 。然后,它使用 pad_to_align 方法将大小向上舍入到对齐倍数,以确保下一个内存块的起始地址也有正确的对齐方式。最后,它使用 max 方法确保分配的大小至少为 mem::size_of::<ListNode> 。这确保了 dealloc 函数可以安全地向已释放的内存块写入 ListNode

Using it

用法

We can now update the ALLOCATOR static in the allocator module to use our new LinkedListAllocator: 我们可以更新 allocator 模块中的 ALLOCATOR 静态项,以使用我们的新 LinkedListAllocator

// in src/allocator.rs

use linked_list::LinkedListAllocator;

#[global_allocator]
static ALLOCATOR: Locked<LinkedListAllocator> =
    Locked::new(LinkedListAllocator::new());

Since the init function behaves the same for the bump and linked list allocators, we don't need to modify the init call in init_heap. 因为 init 函数对于bump分配器和链表分配器的行为相同所以我们不需要修改 init_heap 中的 init 调用。

When we now run our heap_allocation tests again, we see that all tests pass now, including the many_boxes_long_lived test that failed with the bump allocator: 当我们再次运行 heap_allocation 测试时我们看到所有测试都通过了包括使用bump分配器失败的 many_boxes_long_lived 测试:

> cargo test --test heap_allocation
simple_allocation... [ok]
large_vec... [ok]
many_boxes... [ok]
many_boxes_long_lived... [ok]

This shows that our linked list allocator is able to reuse freed memory for subsequent allocations. 这显示了我们的链表分配器可以重用已释放的内存。

Discussion

讨论

In contrast to the bump allocator, the linked list allocator is much more suitable as a general-purpose allocator, mainly because it is able to directly reuse freed memory. However, it also has some drawbacks. Some of them are only caused by our basic implementation, but there are also fundamental drawbacks of the allocator design itself. 和bump分配器相比链表分配器更适合走位一个通用的分配器主要是因为它可以直接重用已释放的内训。然而它也有一些缺点一部分是由于我们的简单实现导致的另一部分是由于分配器设计本身固有的问题。

Merging Freed Blocks

合并已释放的内存块

The main problem with our implementation is that it only splits the heap into smaller blocks but never merges them back together. Consider this example: 我们的实现主要的问题就是它只将堆分成更小的块,但从不将它们合并回一起。考虑下面的例子:

In the first line, three allocations are created on the heap. Two of them are freed again in line 2 and the third is freed in line 3. Now the complete heap is unused again, but it is still split into four individual blocks. At this point, a large allocation might not be possible anymore because none of the four blocks is large enough. Over time, the process continues, and the heap is split into smaller and smaller blocks. At some point, the heap is so fragmented that even normal sized allocations will fail. 在第一行中,我们创建了三个分配。在第二行中,我们再次释放了两个分配,而在第三行中,我们释放了第三个分配。现在,整个堆再次是未使用的,但它仍然分成了四个独立的块。在这个时候,没有一个块足够大,所以无法再创建一个大的分配。随着时间的推移,这个过程继续进行,堆被分成了越来越小的块。在某个时候,堆已经变得如此碎片化,以至于即使是正常大小的分配也会失败。

To fix this problem, we need to merge adjacent freed blocks back together. For the above example, this would mean the following: 为了解决这个问题,我们需要合并相邻的已释放内存块。考虑下面的例子:

Like before, two of the three allocations are freed in line 2. Instead of keeping the fragmented heap, we now perform an additional step in line 2a to merge the two rightmost blocks back together. In line 3, the third allocation is freed (like before), resulting in a completely unused heap represented by three distinct blocks. In an additional merging step in line 3a, we then merge the three adjacent blocks back together. 和之前一样,在第二行中,两个分配被释放。我们现在在 2a 行中执行额外的一步来合并两个相邻的空闲块而不是保持着碎片化。在第 3 行中,第三个分配也被释放(和之前一样),结果是整个未使用的堆被划分成三个独立的块。在第 3a 行中,我们再次合并三个相邻的块。

The linked_list_allocator crate implements this merging strategy in the following way: Instead of inserting freed memory blocks at the beginning of the linked list on deallocate, it always keeps the list sorted by start address. This way, merging can be performed directly on the deallocate call by examining the addresses and sizes of the two neighboring blocks in the list. Of course, the deallocation operation is slower this way, but it prevents the heap fragmentation we saw above. linked_list_allocator crate使用如下的方式来实现合并已释放的内存块deallocate 调用中,它不会将已释放的内存块插入链表的开头,而是始终保持按起始地址排序的链表。这样,在 deallocate 调用中就可以直接通过检查链表中相邻块的地址和大小来执行合并操作。当然,这样做会使释放操作变慢,但它可以防止我们上面看到的堆碎片化问题。

Performance

表现

As we learned above, the bump allocator is extremely fast and can be optimized to just a few assembly operations. The linked list allocator performs much worse in this category. The problem is that an allocation request might need to traverse the complete linked list until it finds a suitable block. 我们在之前了解到的bump分配器的性能非常好因为它只需要几个简单的汇编指令就可以完成。链表分配器的性能要差得多因为它需要遍历整个链表才能找到合适的块。

Since the list length depends on the number of unused memory blocks, the performance can vary extremely for different programs. A program that only creates a couple of allocations will experience relatively fast allocation performance. For a program that fragments the heap with many allocations, however, the allocation performance will be very bad because the linked list will be very long and mostly contain very small blocks. 因为链表长度取决于未使用内存块的数量,所以不同的程序会有不同的性能表现。只有在创建少量分配时,分配性能才会相对较快。而对于频繁分配和释放内存的程序,分配性能会非常差,因为链表会非常长,大部分包含非常小的块。

It's worth noting that this performance issue isn't a problem caused by our basic implementation but a fundamental problem of the linked list approach. Since allocation performance can be very important for kernel-level code, we explore a third allocator design in the following that trades improved performance for reduced memory utilization. 相比于我们基础的实现而言,链表方法的根本问题才是造成性能不佳的主要原因。因为在内核代码中分配性能相当重要,所以我们需要探索第三种在内存利用率和分配性能取得折中的分配器设计。

Fixed-Size Block Allocator

固定大小块分配器

In the following, we present an allocator design that uses fixed-size memory blocks for fulfilling allocation requests. This way, the allocator often returns blocks that are larger than needed for allocations, which results in wasted memory due to internal fragmentation. On the other hand, it drastically reduces the time required to find a suitable block (compared to the linked list allocator), resulting in much better allocation performance. 接下来,我们展示一种使用固定大小的内存块来满足分配请求的分配器设计。使用这种方法,分配器往往会返回比实际需要更大的块,这将会导致浪费内存由于内部碎片,但它会显著减少寻找合适的块的时间(相比链表分配器而言),从而获得更好的分配性能。

Introduction

介绍

The idea behind a fixed-size block allocator is the following: Instead of allocating exactly as much memory as requested, we define a small number of block sizes and round up each allocation to the next block size. For example, with block sizes of 16, 64, and 512 bytes, an allocation of 4 bytes would return a 16-byte block, an allocation of 48 bytes a 64-byte block, and an allocation of 128 bytes a 512-byte block. 固定大小分配器 背后的思想如下:

Like the linked list allocator, we keep track of the unused memory by creating a linked list in the unused memory. However, instead of using a single list with different block sizes, we create a separate list for each size class. Each list then only stores blocks of a single size. For example, with block sizes of 16, 64, and 512, there would be three separate linked lists in memory: 和链表分配器相同,我们通过在未使用的内存区域创建链表来跟踪未使用的内存。然而,我们不再需要为每个不同的块大小创建一个单独的链表,而是为每个大小类创建一个单独的链表。每个列表只存储单个大小的块。例如,对于块大小为 16、64 和 512 的情况,内存中会有三个单独的链表:

.

Instead of a single head pointer, we have the three head pointers head_16, head_64, and head_512 that each point to the first unused block of the corresponding size. All nodes in a single list have the same size. For example, the list started by the head_16 pointer only contains 16-byte blocks. This means that we no longer need to store the size in each list node since it is already specified by the name of the head pointer. 不同于单个的 head 指针,我们现在有三个 head 指针 head_16head_64head_512,它们分别指向对应大小的第一个未使用块。每个列表中的所有节点都具有相同的大小。例如,head_16 指针指向的列表只包含 16 字节的块。这意味着我们不再需要在每个列表节点中存储大小,因为它已经由头指针的名称指定。

Since each element in a list has the same size, each list element is equally suitable for an allocation request. This means that we can very efficiently perform an allocation using the following steps: 因为链表中的每个节点都有相同的大小,所以每个节点都是相同大小的合适分配。这意味着我们可以使用以下步骤非常高效地执行分配:

  • Round up the requested allocation size to the next block size. For example, when an allocation of 12 bytes is requested, we would choose the block size of 16 in the above example.
  • 将请求的分配大小向上取整为下一个块的大小。举例来说,当
  • Retrieve the head pointer for the list, e.g., for block size 16, we need to use head_16.
  • 获取该链表的头指针,例如,对于块大小 16我们需要 head_16
  • Remove the first block from the list and return it.
  • 从该链表中删除第一个块并返回。

Most notably, we can always return the first element of the list and no longer need to traverse the full list. Thus, allocations are much faster than with the linked list allocator. 值得注意的是,我们只需要返回链表的第一个元素,不需要遍历整个链表。因此,分配性能相比于链表分配器要更好。

Block Sizes and Wasted Memory

块大小和浪费的内存

Depending on the block sizes, we lose a lot of memory by rounding up. For example, when a 512-byte block is returned for a 128-byte allocation, three-quarters of the allocated memory is unused. By defining reasonable block sizes, it is possible to limit the amount of wasted memory to some degree. For example, when using the powers of 2 (4, 8, 16, 32, 64, 128, …) as block sizes, we can limit the memory waste to half of the allocation size in the worst case and a quarter of the allocation size in the average case. 在向上取整的过程中我们浪费了大量的内存。举个例子当一个512字节的块被分配给128字节的分配请求时已分配内存的四分之三是未使用的。通过定义合理的块大小限制浪费内存的大小是可能的。举例来说我们使用2的幂48163264128, …)作为块大小时,在最差的情况下我们限制浪费内存的大小为已分配大小的一半,平均情况下时四分之一的已分配内存大小

It is also common to optimize block sizes based on common allocation sizes in a program. For example, we could additionally add block size 24 to improve memory usage for programs that often perform allocations of 24 bytes. This way, the amount of wasted memory can often be reduced without losing the performance benefits. 基于程序中常见的分配内存大小来优化块大小时常见的。举例来说如果程序中经常需要分配24字节的内存时我们可以额外添加24字节的块大小。这样做可以减少浪费的内存但不会显著影响性能。

Deallocation

内存释放

Much like allocation, deallocation is also very performant. It involves the following steps: 和内存分配类似,内存释放也非常高效。它涉及以下步骤:

  • Round up the freed allocation size to the next block size. This is required since the compiler only passes the requested allocation size to dealloc, not the size of the block that was returned by alloc. By using the same size-adjustment function in both alloc and dealloc, we can make sure that we always free the correct amount of memory.
  • 将需要释放的块的大小取整到下一个块大小,这是必需的因为编译器
  • Retrieve the head pointer for the list.
  • 获取链表的头指针
  • Add the freed block to the front of the list by updating the head pointer.
  • 通过更新头指针将已释放的块放到链表头部

Most notably, no traversal of the list is required for deallocation either. This means that the time required for a dealloc call stays the same regardless of the list length. 值得注意的是,释放内存时不需要遍历链表。这意味着释放内存的时间与链表的长度无关。

Fallback Allocator

后备分配器

Given that large allocations (>2 KB) are often rare, especially in operating system kernels, it might make sense to fall back to a different allocator for these allocations. For example, we could fall back to a linked list allocator for allocations greater than 2048 bytes in order to reduce memory waste. Since only very few allocations of that size are expected, the linked list would stay small and the (de)allocations would still be reasonably fast. 考虑到大型分配(>2 KB是罕见的尤其是在操作系统内核中因此将这些分配回退到不同的分配器是有意义的。例如我们可以为大于2048字节的分配回退到链表分配器以减少内存浪费。由于只有很少的这种大小的分配预期链表会保持较小分配和释放操作仍然是合理的。

Creating new Blocks

创建新块

Above, we always assumed that there are always enough blocks of a specific size in the list to fulfill all allocation requests. However, at some point, the linked list for a given block size becomes empty. At this point, there are two ways we can create new unused blocks of a specific size to fulfill an allocation request: 以上的叙述中,我们一直假定有足够的特定大小的未使用块可供分配。然而,在某个特定的块大小的链表为空时,我们有两种方法可以创建新的未使用的特定大小的块来满足分配请求:

  • Allocate a new block from the fallback allocator (if there is one).
  • 从后备分配器分配一个新块(如果有的话)
  • Split a larger block from a different list. This best works if block sizes are powers of two. For example, a 32-byte block can be split into two 16-byte blocks.
  • 从不同的链表中分配一个更大的块。如果块大小是2的幂这种方法效果最好。例如一个32字节的块可以被分成两个16字节的块。

For our implementation, we will allocate new blocks from the fallback allocator since the implementation is much simpler. 对于我们的实现,我们将从后备分配器分配新的块,因为实现起来要简单得多。

Implementation

实现

Now that we know how a fixed-size block allocator works, we can start our implementation. We won't depend on the implementation of the linked list allocator created in the previous section, so you can follow this part even if you skipped the linked list allocator implementation. 现在我们知道一个固定大小块分配器是如何工作的,我们可以开始我们的实现。我们将不依赖于上一节中创建的链表分配器的实现,因此你可以在跳过链表分配器实现的情况下继续关注这一部分。

List Node

链表节点

We start our implementation by creating a ListNode type in a new allocator::fixed_size_block module: 我们从在一个新的allocator::fixed_size_block模块中创建一个ListNode类型开始:

// in src/allocator.rs

pub mod fixed_size_block;
// in src/allocator/fixed_size_block.rs

struct ListNode {
    next: Option<&'static mut ListNode>,
}

This type is similar to the ListNode type of our linked list allocator implementation, with the difference that we don't have a size field. It isn't needed because every block in a list has the same size with the fixed-size block allocator design. 这个类型和我们链表分配器实现中的ListNode类型类似,不同之处在于我们没有size字段。它在固定大小块分配器设计中不需要,因为每个链表中的块都有相同的大小。

Block Sizes

块大小

Next, we define a constant BLOCK_SIZES slice with the block sizes used for our implementation: 接下来,我们定义一个常量BLOCK_SIZES切片,其中包含我们实现中使用的块大小:

// in src/allocator/fixed_size_block.rs

/// The block sizes to use.
/// 要使用的块大小
///
/// The sizes must each be power of 2 because they are also used as
/// the block alignment (alignments must be always powers of 2).
/// 块大小必须是2的幂因为对齐必须始终是2的幂
const BLOCK_SIZES: &[usize] = &[8, 16, 32, 64, 128, 256, 512, 1024, 2048];

As block sizes, we use powers of 2, starting from 8 up to 2048. We don't define any block sizes smaller than 8 because each block must be capable of storing a 64-bit pointer to the next block when freed. For allocations greater than 2048 bytes, we will fall back to a linked list allocator. 我们将使用从8到2048的2的幂作为块大小。我们不定义任何小于8的块大小因为每个块在释放时都必须能够存储一个指向下一个块的64位指针。对于大于2048字节的分配我们将回退到链表分配器。

To simplify the implementation, we define the size of a block as its required alignment in memory. So a 16-byte block is always aligned on a 16-byte boundary and a 512-byte block is aligned on a 512-byte boundary. Since alignments always need to be powers of 2, this rules out any other block sizes. If we need block sizes that are not powers of 2 in the future, we can still adjust our implementation for this (e.g., by defining a second BLOCK_ALIGNMENTS array). 为了简化实现我们将块的大小定义为其所需的内存对齐。因此一个16字节的块总是在16字节边界对齐一个512字节的块总是在512字节边界对齐。由于对齐必须始终是2的幂这意味着任何其他块大小都是无效的。如果我们在未来需要非2的幂的块大小我们可以调整我们的实现来支持这个例如通过定义一个BLOCK_ALIGNMENTS数组)。

The Allocator Type

分配器类型

Using the ListNode type and the BLOCK_SIZES slice, we can now define our allocator type: 使用ListNode类型和BLOCK_SIZES切片,我们现在可以定义我们的分配器类型:

// in src/allocator/fixed_size_block.rs

pub struct FixedSizeBlockAllocator {
    list_heads: [Option<&'static mut ListNode>; BLOCK_SIZES.len()],
    fallback_allocator: linked_list_allocator::Heap,
}

The list_heads field is an array of head pointers, one for each block size. This is implemented by using the len() of the BLOCK_SIZES slice as the array length. As a fallback allocator for allocations larger than the largest block size, we use the allocator provided by the linked_list_allocator. We could also use the LinkedListAllocator we implemented ourselves instead, but it has the disadvantage that it does not merge freed blocks. list_heads 字段是一个 head 指针的列表,一个指针对应一个块大小。使用 BLOCK_SIZES 切片的 len() 作为列表的长度。我们使用 linked_list_allocator 作为分配请求大小大于最大的块大小时的后备分配器。我们也可以使用我们自己实现的 LinkedListAllocator 。但是它有一个缺点是它不能合并空闲块

For constructing a FixedSizeBlockAllocator, we provide the same new and init functions that we implemented for the other allocator types too: 为了构造一个 FixedSizeBlockAllocator,我们提供与我们为其他分配器类型实现的相同的 newinit 函数:

// in src/allocator/fixed_size_block.rs

impl FixedSizeBlockAllocator {
    /// Creates an empty FixedSizeBlockAllocator.
    pub const fn new() -> Self {
        const EMPTY: Option<&'static mut ListNode> = None;
        FixedSizeBlockAllocator {
            list_heads: [EMPTY; BLOCK_SIZES.len()],
            fallback_allocator: linked_list_allocator::Heap::empty(),
        }
    }

    /// Initialize the allocator with the given heap bounds.
    /// 用给定的堆边界初始化分配器
    ///
    /// This function is unsafe because the caller must guarantee that the given
    /// heap bounds are valid and that the heap is unused. This method must be
    /// called only once.
    /// 此函数是不安全的,因为调用者必须保证给定的堆边界是有效的且堆是
    /// 未使用的。此方法只能调用一次。
    pub unsafe fn init(&mut self, heap_start: usize, heap_size: usize) {
        unsafe { self.fallback_allocator.init(heap_start, heap_size); }
    }
}

The new function just initializes the list_heads array with empty nodes and creates an empty linked list allocator as fallback_allocator. The EMPTY constant is needed to tell the Rust compiler that we want to initialize the array with a constant value. Initializing the array directly as [None; BLOCK_SIZES.len()] does not work, because then the compiler requires Option<&'static mut ListNode> to implement the Copy trait, which it does not. This is a current limitation of the Rust compiler, which might go away in the future.

new 函数只是用空节点初始化 list_heads 数组,并创建一个 empty 链表表分配器作为 fallback_allocatorEMPTY 常量是为了告诉 Rust 编译器我们想使用常量值初始化数组。直接初始化数组为 [None; BLOCK_SIZES.len()] 不起作用,因为这样做编译器要求 Option<&'static mut ListNode> 实现 Copy 特征,而它实现。这是 Rust 编译器的当前限制,将来可能会消失。

The unsafe init function only calls the init function of the fallback_allocator without doing any additional initialization of the list_heads array. Instead, we will initialize the lists lazily on alloc and dealloc calls. 不安全的 init 函数只调用 fallback_allocatorinit 函数,而不做 list_heads 数组的任何额外初始化。相反,我们将在 allocdealloc 调用时惰性初始化列表。

For convenience, we also create a private fallback_alloc method that allocates using the fallback_allocator: 为了方便起见,我们还创建了一个私有的 fallback_alloc 方法,它使用 fallback_allocator 分配:

// in src/allocator/fixed_size_block.rs

use alloc::alloc::Layout;
use core::ptr;

impl FixedSizeBlockAllocator {
    /// Allocates using the fallback allocator.
    /// 使用后备分配器分配
    fn fallback_alloc(&mut self, layout: Layout) -> *mut u8 {
        match self.fallback_allocator.allocate_first_fit(layout) {
            Ok(ptr) => ptr.as_ptr(),
            Err(_) => ptr::null_mut(),
        }
    }
}

The Heap type of the linked_list_allocator crate does not implement GlobalAlloc (as it's not possible without locking). Instead, it provides an allocate_first_fit method that has a slightly different interface. Instead of returning a *mut u8 and using a null pointer to signal an error, it returns a Result<NonNull<u8>, ()>. The NonNull type is an abstraction for a raw pointer that is guaranteed to not be a null pointer. By mapping the Ok case to the NonNull::as_ptr method and the Err case to a null pointer, we can easily translate this back to a *mut u8 type. linked_list_allocator crate的 Heap 类型不实现 GlobalAlloc(因为它[没有锁定])。相反,它提供了一个 allocate_first_fit 方法,它的接口有一些不同。与返回 *mut u8 和使用空指针来表示错误不同,它返回一个 Result<NonNull<u8>, ()>NonNull 类型是一个保证不是空指针的原始指针的抽象。通过将 Ok 情况映射到 NonNull::as_ptr 方法和 Err 情况到一个空指针,我们可以很容易地将其转换回 *mut u8 类型。

Calculating the List Index

计算列表索引

Before we implement the GlobalAlloc trait, we define a list_index helper function that returns the lowest possible block size for a given Layout: 在我们实现 GlobalAlloc 特征之前,我们定义了一个 list_index 辅助函数,它返回给定 Layout 的最小可能块大小:

// in src/allocator/fixed_size_block.rs

/// Choose an appropriate block size for the given layout.
/// 为给定布局选择适当的块大小
///
/// Returns an index into the `BLOCK_SIZES` array.
/// 返回 `BLOCK_SIZES` 数组的索引
fn list_index(layout: &Layout) -> Option<usize> {
    let required_block_size = layout.size().max(layout.align());
    BLOCK_SIZES.iter().position(|&s| s >= required_block_size)
}

The block must have at least the size and alignment required by the given Layout. Since we defined that the block size is also its alignment, this means that the required_block_size is the maximum of the layout's size() and align() attributes. To find the next-larger block in the BLOCK_SIZES slice, we first use the iter() method to get an iterator and then the position() method to find the index of the first block that is at least as large as the required_block_size.

Note that we don't return the block size itself, but the index into the BLOCK_SIZES slice. The reason is that we want to use the returned index as an index into the list_heads array. 注意我们不返回块大小本身,而是返回 BLOCK_SIZES 切片的索引。这是因为我们希望将返回的索引用作 list_heads 数组的索引。

Implementing GlobalAlloc

实现 GlobalAlloc

The last step is to implement the GlobalAlloc trait: 最后一步是实现 GlobalAlloc 特征:

// in src/allocator/fixed_size_block.rs

use super::Locked;
use alloc::alloc::GlobalAlloc;

unsafe impl GlobalAlloc for Locked<FixedSizeBlockAllocator> {
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        todo!();
    }

    unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
        todo!();
    }
}

Like for the other allocators, we don't implement the GlobalAlloc trait directly for our allocator type, but use the Locked wrapper to add synchronized interior mutability. Since the alloc and dealloc implementations are relatively large, we introduce them one by one in the following. 和其他分配器类似,我们不会直接为我们的分配器类型实现 GlobalAlloc 特征。相反,我们使用 Locked 包装器 来添加同步内部可变性。由于 allocdealloc 实现相对较大,我们在以下逐个引入。

alloc

The implementation of the alloc method looks like this: alloc 方法的实现如下

// in `impl` block in src/allocator/fixed_size_block.rs

unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
    let mut allocator = self.lock();
    match list_index(&layout) {
        Some(index) => {
            match allocator.list_heads[index].take() {
                Some(node) => {
                    allocator.list_heads[index] = node.next.take();
                    node as *mut ListNode as *mut u8
                }
                None => {
                    // no block exists in list => allocate new block
                    // 没有块存在于列表中 => 分配新块
                    let block_size = BLOCK_SIZES[index];
                    // only works if all block sizes are a power of 2
                    // 只有当所有块大小都是 2 的幂时才有效
                    let block_align = block_size;
                    let layout = Layout::from_size_align(block_size, block_align)
                        .unwrap();
                    allocator.fallback_alloc(layout)
                }
            }
        }
        None => allocator.fallback_alloc(layout),
    }
}

Let's go through it step by step: 让我们一步步

First, we use the Locked::lock method to get a mutable reference to the wrapped allocator instance. Next, we call the list_index function we just defined to calculate the appropriate block size for the given layout and get the corresponding index into the list_heads array. If this index is None, no block size fits for the allocation, therefore we use the fallback_allocator using the fallback_alloc function. 首先,我们使用 Locked::lock 方法来获取一个包装的分配器实例的可变引用。接下来,我们调用 list_index 函数来计算给定布局的适当块大小,并获取相应的索引到 list_heads 数组。如果此索引为 None,则没有适合分配的块大小,因此我们调用 fallback_alloc 函数来使用 fallback_allocator

If the list index is Some, we try to remove the first node in the corresponding list started by list_heads[index] using the Option::take method. If the list is not empty, we enter the Some(node) branch of the match statement, where we point the head pointer of the list to the successor of the popped node (by using take again). Finally, we return the popped node pointer as a *mut u8. 如果列表索引为 Some,我们尝试使用 Option::take 方法从对应列表的开头移除第一个节点。如果列表不为空,我们进入 Some(node) 分支,其中我们将列表头指针指向弹出节点的后继节点(再次使用 take)。最后,我们将弹出节点指针作为 *mut u8类型返回。

If the list head is None, it indicates that the list of blocks is empty. This means that we need to construct a new block as described above. For that, we first get the current block size from the BLOCK_SIZES slice and use it as both the size and the alignment for the new block. Then we create a new Layout from it and call the fallback_alloc method to perform the allocation. The reason for adjusting the layout and alignment is that the block will be added to the block list on deallocation. 如果链表头是 None,则表明块列表为空。这意味着我们需要像上文中描述的那样构造一个新块。为此,我们首先从 BLOCK_SIZES 切片中获取当前块大小,并将其用作新块的大小和对齐。然后我们从它创建一个新的 Layout 并调用 fallback_alloc 方法执行分配。调整布局和对齐的原因是因为块将在释放时添加到块列表中。

dealloc

The implementation of the dealloc method looks like this: dealloc 方法的实现如下:

// in src/allocator/fixed_size_block.rs

use core::{mem, ptr::NonNull};

// inside the `unsafe impl GlobalAlloc` block
// 在 `unsafe impl GlobalAlloc` 块中

unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
    let mut allocator = self.lock();
    match list_index(&layout) {
        Some(index) => {
            let new_node = ListNode {
                next: allocator.list_heads[index].take(),
            };
            // verify that block has size and alignment required for storing node
            // 验证块是否具有存储节点所需的大小和对齐
            assert!(mem::size_of::<ListNode>() <= BLOCK_SIZES[index]);
            assert!(mem::align_of::<ListNode>() <= BLOCK_SIZES[index]);
            let new_node_ptr = ptr as *mut ListNode;
            unsafe {
                new_node_ptr.write(new_node);
                allocator.list_heads[index] = Some(&mut *new_node_ptr);
            }
        }
        None => {
            let ptr = NonNull::new(ptr).unwrap();
            unsafe {
                allocator.fallback_allocator.deallocate(ptr, layout);
            }
        }
    }
}

Like in alloc, we first use the lock method to get a mutable allocator reference and then the list_index function to get the block list corresponding to the given Layout. If the index is None, no fitting block size exists in BLOCK_SIZES, which indicates that the allocation was created by the fallback allocator. Therefore, we use its deallocate to free the memory again. The method expects a NonNull instead of a *mut u8, so we need to convert the pointer first. (The unwrap call only fails when the pointer is null, which should never happen when the compiler calls dealloc.)

If list_index returns a block index, we need to add the freed memory block to the list. For that, we first create a new ListNode that points to the current list head (by using Option::take again). Before we write the new node into the freed memory block, we first assert that the current block size specified by index has the required size and alignment for storing a ListNode. Then we perform the write by converting the given *mut u8 pointer to a *mut ListNode pointer and then calling the unsafe write method on it. The last step is to set the head pointer of the list, which is currently None since we called take on it, to our newly written ListNode. For that, we convert the raw new_node_ptr to a mutable reference.

There are a few things worth noting:

  • We don't differentiate between blocks allocated from a block list and blocks allocated from the fallback allocator. This means that new blocks created in alloc are added to the block list on dealloc, thereby increasing the number of blocks of that size.
  • The alloc method is the only place where new blocks are created in our implementation. This means that we initially start with empty block lists and only fill these lists lazily when allocations of their block size are performed.
  • We don't need unsafe blocks in alloc and dealloc, even though we perform some unsafe operations. The reason is that Rust currently treats the complete body of unsafe functions as one large unsafe block. Since using explicit unsafe blocks has the advantage that it's obvious which operations are unsafe and which are not, there is a proposed RFC to change this behavior.

Using it

用法

To use our new FixedSizeBlockAllocator, we need to update the ALLOCATOR static in the allocator module: 为了使用我们新的 FixedSizeBlockAllocator,我们需要更新 allocator 模块中的 ALLOCATOR 静态变量:

// in src/allocator.rs

use fixed_size_block::FixedSizeBlockAllocator;

#[global_allocator]
static ALLOCATOR: Locked<FixedSizeBlockAllocator> = Locked::new(
    FixedSizeBlockAllocator::new());

Since the init function behaves the same for all allocators we implemented, we don't need to modify the init call in init_heap. 因为我们的 init 函数对于我们实现的所有分配器都具有相同的行为,所以我们不需要修改 init_heap 中的 init 调用。

When we now run our heap_allocation tests again, all tests should still pass: 当我们再次运行 heap_allocation 测试时,所有测试都仍然是全部通过:

> cargo test --test heap_allocation
simple_allocation... [ok]
large_vec... [ok]
many_boxes... [ok]
many_boxes_long_lived... [ok]

Our new allocator seems to work! 我们的分配器看起来运行正常!

Discussion

讨论

While the fixed-size block approach has much better performance than the linked list approach, it wastes up to half of the memory when using powers of 2 as block sizes. Whether this tradeoff is worth it heavily depends on the application type. For an operating system kernel, where performance is critical, the fixed-size block approach seems to be the better choice. 尽管固定大小块分配器相比于链表分配器有更好的性能但当使用2的幂作为块大小时它会浪费一半的内存。这个取舍是否值得取决于应用的类型。对于一个操作系统内核来说性能是至关重要的因此固定大小块分配器看起来是更好的选择。

On the implementation side, there are various things that we could improve in our current implementation: 从实现角度说,我们现有的实现还有一些地方可以提升

  • Instead of only allocating blocks lazily using the fallback allocator, it might be better to pre-fill the lists to improve the performance of initial allocations.
  • To simplify the implementation, we only allowed block sizes that are powers of 2 so that we could also use them as the block alignment. By storing (or calculating) the alignment in a different way, we could also allow arbitrary other block sizes. This way, we could add more block sizes, e.g., for common allocation sizes, in order to minimize the wasted memory.
  • We currently only create new blocks, but never free them again. This results in fragmentation and might eventually result in allocation failure for large allocations. It might make sense to enforce a maximum list length for each block size. When the maximum length is reached, subsequent deallocations are freed using the fallback allocator instead of being added to the list.
  • Instead of falling back to a linked list allocator, we could have a special allocator for allocations greater than 4 KiB. The idea is to utilize paging, which operates on 4 KiB pages, to map a continuous block of virtual memory to non-continuous physical frames. This way, fragmentation of unused memory is no longer a problem for large allocations.
  • With such a page allocator, it might make sense to add block sizes up to 4 KiB and drop the linked list allocator completely. The main advantages of this would be reduced fragmentation and improved performance predictability, i.e., better worst-case performance.

It's important to note that the implementation improvements outlined above are only suggestions. Allocators used in operating system kernels are typically highly optimized for the specific workload of the kernel, which is only possible through extensive profiling.

Variations

变体

There are also many variations of the fixed-size block allocator design. Two popular examples are the slab allocator and the buddy allocator, which are also used in popular kernels such as Linux. In the following, we give a short introduction to these two designs. 还有许多固定大小块分配器的变体。两个流行的例子是 slab分配器伙伴分配器,它们也被用于流行的内核,如 Linux。在下面我们将简单介绍这两中设计。

Slab Allocator

Slab分配器

The idea behind a slab allocator is to use block sizes that directly correspond to selected types in the kernel. This way, allocations of those types fit a block size exactly and no memory is wasted. Sometimes, it might be even possible to preinitialize type instances in unused blocks to further improve performance. slab分配器的基本思想是使用与内核中选择的类型对应的块大小。这样,这些类型的分配恰好适合一个块大小,没有浪费任何内存。有时,甚至可能预先初始化未使用块中的类型实例,以进一步提高性能。

Slab allocation is often combined with other allocators. For example, it can be used together with a fixed-size block allocator to further split an allocated block in order to reduce memory waste. It is also often used to implement an object pool pattern on top of a single large allocation. Slab分配器常和其他分配器组合使用。举个例子它可以和一个固定大小块分配器一起使用以进一步减少内存浪费。它还常被用来在一个大的分配上实现一个对象池模式

Buddy Allocator

伙伴分配器

Instead of using a linked list to manage freed blocks, the buddy allocator design uses a binary tree data structure together with power-of-2 block sizes. When a new block of a certain size is required, it splits a larger sized block into two halves, thereby creating two child nodes in the tree. Whenever a block is freed again, its neighbor block in the tree is analyzed. If the neighbor is also free, the two blocks are joined back together to form a block of twice the size. 伙伴分配器使用一个二叉树数据结构而不是链表来管理空闲块。当需要一个特定大小的块时,它会将一个更大的块分成两半,从而在树中创建两个子节点。当一个块再次被释放时,它的伙伴块会被分析。如果伙伴块也是空闲的,那么这两个块就会合并回一个更大的块。

The advantage of this merge process is that external fragmentation is reduced so that small freed blocks can be reused for a large allocation. It also does not use a fallback allocator, so the performance is more predictable. The biggest drawback is that only power-of-2 block sizes are possible, which might result in a large amount of wasted memory due to internal fragmentation. For this reason, buddy allocators are often combined with a slab allocator to further split an allocated block into multiple smaller blocks. 合并过程的优势在于减少了内部碎片因此小的空闲款也能被一个大的分配重用。同时它也不需要一个后备分配器因此性能更容易预测。然而伙伴分配器只支持2的幂作为块大小这会因为内部碎片导致浪费大量内存。因此伙伴分配器通常与slab分配器结合使用进一步将分配的块拆分成多个较小的块。

Summary

总结

This post gave an overview of different allocator designs. We learned how to implement a basic bump allocator, which hands out memory linearly by increasing a single next pointer. While bump allocation is very fast, it can only reuse memory after all allocations have been freed. For this reason, it is rarely used as a global allocator. 这篇文章介绍了不同的分配器设计。我们学习了如何实现一个基本的bump分配器,它通过增加一个next指针线性地分配内存。虽然这种分配很快,但只有在所有分配都被释放后才能重用内存。因此,它很少被用作全局分配器。

Next, we created a linked list allocator that uses the freed memory blocks itself to create a linked list, the so-called free list. This list makes it possible to store an arbitrary number of freed blocks of different sizes. While no memory waste occurs, the approach suffers from poor performance because an allocation request might require a complete traversal of the list. Our implementation also suffers from external fragmentation because it does not merge adjacent freed blocks back together. 接着,我们创建了一个链表分配器,它使用空闲的内存块本身来创建一个链表,称为空闲列表。这个列表使我们能够存储不同大小的任意数量的空闲块。虽然没有发生内存浪费,但这种方法的性能较差,因为分配请求可能需要遍历整个列表。我们的实现也因为没有合并相邻的空闲块而遭受外部碎片问题。

To fix the performance problems of the linked list approach, we created a fixed-size block allocator that predefines a fixed set of block sizes. For each block size, a separate free list exists so that allocations and deallocations only need to insert/pop at the front of the list and are thus very fast. Since each allocation is rounded up to the next larger block size, some memory is wasted due to internal fragmentation. However, this approach is fast for most allocations, and the memory waste is acceptable for most use cases. 为了解决链表方法的性能问题,我们创建了一个固定大小块分配器,它预先定义了一组固定的块大小。对于每个块大小,都存在一个单独的空闲列表,以便分配和释放只需要在列表的前面插入/弹出,因此非常快。由于每个分配都被舍入到下一个更大的块大小,因此由于内部碎片而导致浪费了一些内存。然而,这种方法对于大部分分配来说是快速的,并且内存浪费对于大部分用例来说是可接受的。

To fix the performance problems of the linked list approach, we created a fixed-size block allocator that predefines a fixed set of block sizes. For each block size, a separate free list exists so that allocations and deallocations only need to insert/pop at the front of the list and are thus very fast. Since each allocation is rounded up to the next larger block size, some memory is wasted due to internal fragmentation. 为了解决链表方法的性能问题,我们创建了一个预定义了固定块大小的固定大小块分配器。对于每个块大小,都存在一个单独的空闲列表,以便分配和释放只需要在列表的前面插入/弹出,因此非常快。由于每个分配都被舍入到下一个更大的块大小,因此由于内部碎片而导致浪费了一些内存。

There are many more allocator designs with different tradeoffs. Slab allocation works well to optimize the allocation of common fixed-size structures, but is not applicable in all situations. Buddy allocation uses a binary tree to merge freed blocks back together, but wastes a large amount of memory because it only supports power-of-2 block sizes. It's also important to remember that each kernel implementation has a unique workload, so there is no "best" allocator design that fits all cases. 还有其他分配器设计,每种设计都有不同的权衡。Slab分配适用于优化常见固定大小结构的分配,但它不是在所有情况下都适用。伙伴分配使用二叉树将空闲块合并回一起但由于只支持2的幂作为块大小因此浪费了大量内存。还要记住每个内核实现都有一个独特的工作负载所以没有适合所有情况的“最佳”分配器设计。

下篇预告

With this post, we conclude our memory management implementation for now. Next, we will start exploring multitasking, starting with cooperative multitasking in the form of async/await. In subsequent posts, we will then explore threads, multiprocessing, and processes. 在下一篇中,我们将开始探索多任务处理,首先从 async/await 的形式开始合作多任务处理。随后的帖子,我们将探讨线程多处理进程