Compare commits

...

7 Commits

Author SHA1 Message Date
seewishnew
e8ea607b48 Merge 128d456923 into 4b023bb432 2024-01-05 10:05:36 -08:00
Philipp Oppermann
4b023bb432 Merge pull request #1262 from acyanbird/main
fix testing and paging introduction chapter errors in zh-CN translation
2024-01-05 18:00:30 +01:00
acyanbird
b1b35833d6 fix zh-CN paging introduction 2024-01-05 16:27:14 +00:00
acyanbird
34120a0409 fix zh-CN testing code err 2024-01-05 16:16:08 +00:00
Vishnu C
128d456923 Minor corrections 2022-12-28 01:48:13 -08:00
Vishnu C
0652ed79c3 Minor edits and formatting corrections 2022-12-28 01:40:54 -08:00
Vishnu C
7500cac640 Adds code and documentation to rectify potential leaky headers in linked list allocator 2022-12-28 01:23:09 -08:00
3 changed files with 112 additions and 17 deletions

View File

@@ -989,7 +989,7 @@ harness = false
#![no_main]
use core::panic::PanicInfo;
use blog_os::{QemuExitCode, exit_qemu, serial_println};
use blog_os::{QemuExitCode, exit_qemu, serial_println, serial_print};
#[no_mangle]
pub extern "C" fn _start() -> ! {

View File

@@ -149,7 +149,7 @@ x86_64 平台使用4级页表页大小为4KiB无论层级每个页表
![Bits 012 are the page offset, bits 1221 the level 1 index, bits 2130 the level 2 index, bits 3039 the level 3 index, and bits 3948 the level 4 index](x86_64-table-indices-from-address.svg)
我们可以看到,每个表索引号占据9个字节,这当然是有道理的,每个表都有 2^9 = 512 个条目低12位用来表示内存页的偏移量2^12 bytes = 4KiB而上文提到页大小为4KiB。第48-64位毫无用处这也就意味着 x86_64 并非真正的64位因为它实际上支持48位地址。
我们可以看到,每个表索引号占据 9 个比特,这当然是有道理的,每个表都有 2^9 = 512 个条目低12位用来表示内存页的偏移量2^12 bytes = 4KiB而上文提到页大小为4KiB。第 48-64 位毫无用处,这也就意味着 x86_64 并非真正的 64 位,因为它实际上支持 48 位地址。
[5-level page table]: https://en.wikipedia.org/wiki/Intel_5-level_paging
@@ -191,7 +191,7 @@ x86_64 平台使用4级页表页大小为4KiB无论层级每个页表
- 1个4级页表
- 512个3级页表因为4级页表可以有512个条目
- 512*512个2级页表因为每个3级页表可以有512个条目
- 512*512*512个1级页表因为每个2级页表可以有512个条目
- 512\*512\*512个1级页表因为每个2级页表可以有512个条目
### 页表格式
@@ -225,7 +225,7 @@ pub struct PageTable {
| 63 | no execute | 禁止在该页中运行代码EFER寄存器中的NXE比特位必须一同被设置 |
我们可以看到仅1251位会用于存储页帧地址或页表地址其余比特都用于存储标志位或由操作系统自由使用。
其原因就是该地址总是指向一个4096比特对齐的地址、页表或者页帧的起始地址。
其原因就是该地址总是指向一个4096字节对齐的地址、页表或者页帧的起始地址。
这也就意味着0-11位始终为0没有必要存储这些东西硬件层面在使用该地址之前也会将这12位比特设置为052-63位同理因为x86_64平台仅支持52位物理地址类似于上文中提到的仅支持48位虚拟地址的原因
进一步说明一下可用的标志位:

View File

@@ -570,11 +570,26 @@ use super::align_up;
use core::mem;
impl LinkedListAllocator {
/// Aligns a given address up to a multiple of
/// `mem::align_of::<ListNode>, which is 8 bytes
/// for x86_64.
fn align_to_list_node(addr: usize) -> usize {
align_up(addr, mem::align_of::<ListNode>())
}
/// Checks to make sure that alignment and size conditions
/// to store a `ListNode` are guaranteed for a given region
/// [addr, addr + size).
fn is_valid_region(addr: usize, size: usize) -> bool {
addr == Self::align_to_list_node(addr) &&
size >= mem::size_of::<ListNode>()
}
/// Adds the given memory region to the front of the list.
unsafe fn add_free_region(&mut self, addr: usize, size: usize) {
// ensure that the freed region is capable of holding ListNode
assert_eq!(align_up(addr, mem::align_of::<ListNode>()), addr);
assert!(size >= mem::size_of::<ListNode>());
// ensure that the region is capable of holding ListNode
assert!(Self::is_valid_region(addr, size));
// create a new list node and append it at the start of the list
let mut node = ListNode::new(size);
@@ -664,18 +679,34 @@ impl LinkedListAllocator {
fn alloc_from_region(region: &ListNode, size: usize, align: usize)
-> Result<usize, ()>
{
let alloc_start = align_up(region.start_addr(), align);
let alloc_end = alloc_start.checked_add(size).ok_or(())?;
let mut alloc_start = align_up(region.start_addr(), align);
if alloc_start != region.start_addr() {
// We have some potential wasted space at the beginning of the region
// that cannot be used due to alignment constraints. We want to be
// able to recycle this space as well in our linked list. Otherwise
// we may never be able to reclaim this space.
// We need to ensure that there is enough space up front for a `ListNode`
// so we need to realign alloc_start after `size_of::<ListNode>` bytes
// from `region.start_addr()`.
// In practice, this can occur in x86_64 only when align is set to 16 bytes.
let pushed_start_addr = region
.start_addr()
.checked_add(mem::size_of::<ListNode>())
.ok_or(())?;
alloc_start = align_up(pushed_start_addr, align);
}
let alloc_end = alloc_start.checked_add(size).ok_or(())?;
if alloc_end > region.end_addr() {
// region too small
return Err(());
}
let excess_size = region.end_addr() - alloc_end;
if excess_size > 0 && excess_size < mem::size_of::<ListNode>() {
// rest of region too small to hold a ListNode (required because the
// allocation splits the region in a used and a free part)
if excess_size > 0 && !Self::is_valid_region(alloc_end, excess_size) {
// Improper alignment or the rest of region too small to hold a ListNode (required
// because the allocation splits the region into a used and up to two free parts).
return Err(());
}
@@ -687,7 +718,16 @@ impl LinkedListAllocator {
First, the function calculates the start and end address of a potential allocation, using the `align_up` function we defined earlier and the [`checked_add`] method. If an overflow occurs or if the end address is behind the end address of the region, the allocation doesn't fit in the region and we return an error.
The function performs a less obvious check after that. This check is necessary because most of the time an allocation does not fit a suitable region perfectly, so that a part of the region remains usable after the allocation. This part of the region must store its own `ListNode` after the allocation, so it must be large enough to do so. The check verifies exactly that: either the allocation fits perfectly (`excess_size == 0`) or the excess size is large enough to store a `ListNode`.
The function performs a couple of less obvious checks on top of that. When we first perform `align_up` we may get an `alloc_start` that is not the same as `region.start_addr()`. In this case, there can still be some free memory we need to keep track of between `region.start_addr()` (inclusive) to this initially aligned `alloc_start` (exclusive). We need to ensure that this region is suitable for storing a `ListNode` by performing the alignment and size checks in `is_valid_region`.
As `region.start_addr()` is guaranteed to satisfy the alignment condition of `ListNode`, we technically only need to guarantee that the size is not too small. We try and realign after accounting for this space to store one `ListNode` instance after `region.start_addr()`. This may end up pushing our end address out of our region, in which case this entire region we are checking will not be sufficient.
It is interesting to note that this situation can occur in one edge case in the 64-bit architecture we are targeting, where `align` is set to 16 bytes and `region.start_addr()` happens to be some number `16*n + 8`. `alloc_start` would then be set to `16*(n+1)`, leaving us `head_excess_size` of just 8 bytes, which would be insufficient to store the 16 bytes required for a `ListNode`.
We could also have some free memory between `alloc_end` (inclusive) to `region.end_addr()` (exclusive). Here `alloc_end` (in general) is not guaranteed to satisfy the alignment condition of `ListNode`, nor is there a guarantee that the remaining space is sufficient to store a `ListNode`. This check is necessary because most of the time an allocation does not fit a suitable region perfectly, so that a part of the region remains usable after the allocation. This part of the region must store its own `ListNode` after the allocation, so it must be large enough to do so, and it must satisfy the alignment condition, which is exactly what our `is_valid_region` method performs.
We shall soon see how we will actually modify the requested layout size and alignment in our implementation of `GlobalAlloc::alloc()` for the `LinkedListAllocator` to ensure that it additionally conforms to the alignment requirements for storing a `ListNode`. This is essential to ensure that `GlobalAllocator::dealloc()` can successfully add the region back into our linked list.
#### Implementing `GlobalAlloc`
@@ -712,10 +752,20 @@ unsafe impl GlobalAlloc for Locked<LinkedListAllocator> {
if let Some((region, alloc_start)) = allocator.find_region(size, align) {
let alloc_end = alloc_start.checked_add(size).expect("overflow");
let excess_size = region.end_addr() - alloc_end;
if excess_size > 0 {
allocator.add_free_region(alloc_end, excess_size);
let start_addr = region.start_addr();
let end_addr = region.end_addr();
let tail_excess_size = end_addr - alloc_end;
if tail_excess_size > 0 {
allocator.add_free_region(alloc_end, tail_excess_size);
}
let head_excess_size = alloc_start - start_addr;
if head_excess_size > 0 {
allocator.add_free_region(start_addr, head_excess_size);
}
alloc_start as *mut u8
} else {
ptr::null_mut()
@@ -735,7 +785,7 @@ Let's start with the `dealloc` method because it is simpler: First, it performs
The `alloc` method is a bit more complex. It starts with the same layout adjustments and also calls the [`Mutex::lock`] function to receive a mutable allocator reference. Then it uses the `find_region` method to find a suitable memory region for the allocation and remove it from the list. If this doesn't succeed and `None` is returned, it returns `null_mut` to signal an error as there is no suitable memory region.
In the success case, the `find_region` method returns a tuple of the suitable region (no longer in the list) and the start address of the allocation. Using `alloc_start`, the allocation size, and the end address of the region, it calculates the end address of the allocation and the excess size again. If the excess size is not null, it calls `add_free_region` to add the excess size of the memory region back to the free list. Finally, it returns the `alloc_start` address casted as a `*mut u8` pointer.
In the success case, the `find_region` method returns a tuple of the suitable region (no longer in the list) and the start address of the allocation. Using `alloc_start`, the allocation size, and the end address of the region, it calculates the end address of the allocation and the excess free fragments that are usable again. If the excess sizes are not zero, it calls `add_free_region` to add the excess sizes of the memory regions back to the free list. Finally, it returns the `alloc_start` address casted as a `*mut u8` pointer.
#### Layout Adjustments
@@ -797,6 +847,51 @@ many_boxes_long_lived... [ok]
This shows that our linked list allocator is able to reuse freed memory for subsequent allocations.
Additionally, to test that we are not leaking any excess segments due to `alloc_start` realignment we can add a simple test case:
```rust
// in tests/heap_allocation.rs
#[test_case]
fn head_excess_reuse() {
#[derive(Debug, Clone, PartialEq, Eq)]
#[repr(C, align(8))]
struct A(u128, u64);
assert_eq!(8, align_of::<A>());
assert_eq!(24, size_of::<A>()); // 24 % 16 = 8
#[derive(Debug, Clone, PartialEq, Eq)]
#[repr(C, align(16))]
struct B(u128, u64);
assert_eq!(16, align_of::<B>());
assert_eq!(32, size_of::<B>());
let a1 = Box::new(A(1, 1));
let b1 = Box::new(B(1, 1));
let a2 = Box::new(A(2, 2));
assert_eq!(*a1, A(1, 1));
assert_eq!(*b1, B(1, 1));
assert_eq!(*a2, A(2, 2));
let a1_raw = Box::into_raw(a1) as usize;
let b1_raw = Box::into_raw(b1) as usize;
let a2_raw = Box::into_raw(a2) as usize;
assert_eq!(HEAP_START, a1);
assert_eq!(HEAP_START + 48, b1);
assert_eq!(HEAP_START + 24, a2);
}
```
In this test case we start off with two identical structs `A` and `B`, with different alignment requirements as specified in their struct `#[repr]` attributes. Instances of `A` will have addresses that are a multiple of 8 and those of `B` will have addresses that are a multiple of `16`.
`a1`, an instance of struct `A` on the heap, takes up space from `HEAP_START` to `HEAP_START + 24`, as `HEAP_START` is a multiple of 8 already. `b1` is an instance of struct `B` on the heap, but it needs an address that is a multiple of 16. Therefore, although `HEAP_START + 24` is available, our `alloc_from_region` will first attempt to set `alloc_start = HEAP_START + 32`. However, this will not leave enough room to store a `ListNode` in the 8 bytes between `HEAP_START + 24` and `HEAP_START + 32`. Next, it will attempt to set `alloc_start = HEAP_START + 48` to satisfy both the alignment constraint and to allow a `ListNode` to account for the excess size at the head end of this region.
Because we are adding the `head_excess_size` fragment after `tail_excess_size` fragment in our `alloc` implementation, and because our linked list implementation follows LIFO (Last In First Out) ordering, our linked list will first search the `head_excess_size` region first on a new heap alloc request. We exploit this fact in this test by trying to allocate `a2`, which is an instance of struct `A`, which should fit neatly in the 24 bytes that were recycled from `HEAP_START + 24` to `HEAP_START + 48` as a part of the `head_excess_size` fragment from the previous allocation for `b1`. We can see that in our final lines of this test we are leaking these Boxed pointers and casting them to `usize` to help perform these assertions to ensure that our linked list allocator accounted for all the excess fragments.
### Discussion
In contrast to the bump allocator, the linked list allocator is much more suitable as a general-purpose allocator, mainly because it is able to directly reuse freed memory. However, it also has some drawbacks. Some of them are only caused by our basic implementation, but there are also fundamental drawbacks of the allocator design itself.