Compare commits

...

7 Commits

Author SHA1 Message Date
seewishnew
16e9018e91 Merge 128d456923 into 6d20ba47fa 2024-03-01 05:08:44 +09:00
Philipp Oppermann
6d20ba47fa Merge pull request #1298 from acyanbird/format
Format for two post
2024-02-28 19:03:48 +01:00
acyanbird
a3bbd5ab55 update
wrong code branch
2024-02-28 17:39:58 +00:00
acyanbird
8e6c4caffc update 2024-02-13 19:32:41 +00:00
Vishnu C
128d456923 Minor corrections 2022-12-28 01:48:13 -08:00
Vishnu C
0652ed79c3 Minor edits and formatting corrections 2022-12-28 01:40:54 -08:00
Vishnu C
7500cac640 Adds code and documentation to rectify potential leaky headers in linked list allocator 2022-12-28 01:23:09 -08:00
4 changed files with 116 additions and 21 deletions

View File

@@ -69,7 +69,7 @@ x86 架构支持两种固件标准: **BIOS**[Basic Input/Output System](htt
## 最小内核 ## 最小内核
现在我们已经明白电脑是如何启动的那也是时候编写我们自己的内核了。我们的小目标是创建一个内核的磁盘映像它能够在启动时向屏幕输出一行“Hello World!”;我们的工作将基于上一章构建的[独立式可执行程序][freestanding Rust binary]。 现在我们已经明白电脑是如何启动的那也是时候编写我们自己的内核了。我们的小目标是创建一个内核的磁盘映像它能够在启动时向屏幕输出一行“Hello World!”;我们的工作将基于上一章构建的[独立式可执行程序][freestanding-rust-binary]。
如果读者还有印象的话,在上一章,我们使用 `cargo` 构建了一个独立的二进制程序;但这个程序依然基于特定的操作系统平台:因平台而异,我们需要定义不同名称的函数,且使用不同的编译指令。这是因为在默认情况下,`cargo` 会为特定的**宿主系统**host system构建源码比如为你正在运行的系统构建源码。这并不是我们想要的因为我们的内核不应该基于另一个操作系统——我们想要编写的就是这个操作系统。确切地说我们想要的是编译为一个特定的**目标系统**target system 如果读者还有印象的话,在上一章,我们使用 `cargo` 构建了一个独立的二进制程序;但这个程序依然基于特定的操作系统平台:因平台而异,我们需要定义不同名称的函数,且使用不同的编译指令。这是因为在默认情况下,`cargo` 会为特定的**宿主系统**host system构建源码比如为你正在运行的系统构建源码。这并不是我们想要的因为我们的内核不应该基于另一个操作系统——我们想要编写的就是这个操作系统。确切地说我们想要的是编译为一个特定的**目标系统**target system

View File

@@ -18,7 +18,7 @@ translation_contributors = ["liuyuran"]
<!-- more --> <!-- more -->
这个系列的 blog 在[GitHub]上开放开发,如果你有任何问题,请在这里开一个 issue 来讨论。当然你也可以在[底部][at the bottom]留言。你可以在[`post-08`][post branch]找到这篇文章的完整源码。 这个系列的 blog 在[GitHub]上开放开发,如果你有任何问题,请在这里开一个 issue 来讨论。当然你也可以在[底部][at the bottom]留言。你可以在[`post-09`][post branch]找到这篇文章的完整源码。
[GitHub]: https://github.com/phil-opp/blog_os [GitHub]: https://github.com/phil-opp/blog_os
[at the bottom]: #comments [at the bottom]: #comments
@@ -555,9 +555,9 @@ fn translate_addr_inner(addr: VirtAddr, physical_memory_offset: VirtAddr)
我们没有重复使用`active_level_4_table`函数,而是再次从`CR3`寄存器读取4级帧。我们这样做是因为它简化了这个原型的实现。别担心我们一会儿就会创建一个更好的解决方案。 我们没有重复使用`active_level_4_table`函数,而是再次从`CR3`寄存器读取4级帧。我们这样做是因为它简化了这个原型的实现。别担心我们一会儿就会创建一个更好的解决方案。
`VirtAddr`结构已经提供了计算四级页面表索引的方法。我们将这些索引存储在一个小数组中,因为它允许我们使用`for`循环遍历页表。在循环之外,我们记住了最后访问的`frame',以便以后计算物理地址。`frame`在迭代时指向页表框架在最后一次迭代后指向映射的框架也就是在跟随第1级条目之后。 `VirtAddr`结构已经提供了计算四级页面表索引的方法。我们将这些索引存储在一个小数组中,因为它允许我们使用`for`循环遍历页表。在循环之外,我们记住了最后访问的`frame`,以便以后计算物理地址。`frame`在迭代时指向页表框架在最后一次迭代后指向映射的框架也就是在跟随第1级条目之后。
在这个循环中,我们再次使用`physical_memory_offset`将帧转换为页表引用。然后我们读取当前页表的条目,并使用[`PageTableEntry::frame`]函数来检索映射的框架。如果该条目没有映射到一个框架,我们返回`None'。如果该条目映射了一个巨大的2&nbsp;MiB或1&nbsp;GiB页面我们就暂时慌了。 在这个循环中,我们再次使用`physical_memory_offset`将帧转换为页表引用。然后我们读取当前页表的条目,并使用[`PageTableEntry::frame`]函数来检索映射的框架。如果该条目没有映射到一个框架,我们返回`None`。如果该条目映射了一个巨大的2&nbsp;MiB或1&nbsp;GiB页面我们就暂时慌了。
[`PageTableEntry::frame`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/page_table/struct.PageTableEntry.html#method.frame [`PageTableEntry::frame`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/page_table/struct.PageTableEntry.html#method.frame
@@ -648,7 +648,7 @@ unsafe fn active_level_4_table(physical_memory_offset: VirtAddr)
{} {}
``` ```
该函数接受 "physical_memory_offset "作为参数,并返回一个新的 "OffsetPageTable "实例,该实例具有 "静态 "寿命。这意味着该实例在我们内核的整个运行时间内保持有效。在函数体中,我们首先调用 "active_level_4_table "函数来获取4级页表的可变引用。然后我们用这个引用调用[`OffsetPageTable::new`] 函数。作为第二个参数,`new`函数希望得到物理内存映射开始的虚拟地址,该地址在`physical_memory_offset'变量中给出。 该函数接受 "physical_memory_offset "作为参数,并返回一个新的 "OffsetPageTable "实例,该实例具有 "静态 "寿命。这意味着该实例在我们内核的整个运行时间内保持有效。在函数体中,我们首先调用 "active_level_4_table "函数来获取4级页表的可变引用。然后我们用这个引用调用[`OffsetPageTable::new`] 函数。作为第二个参数,`new`函数希望得到物理内存映射开始的虚拟地址,该地址在`physical_memory_offset`变量中给出。
[`OffsetPageTable::new`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/struct.OffsetPageTable.html#method.new [`OffsetPageTable::new`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/struct.OffsetPageTable.html#method.new
@@ -896,7 +896,7 @@ impl BootInfoFrameAllocator {
#### 一个 `usable_frames` 方法 #### 一个 `usable_frames` 方法
在我们实现`FrameAllocator'特性之前,我们添加一个辅助方法,将内存映射转换为可用帧的迭代器。 在我们实现`FrameAllocator`特性之前,我们添加一个辅助方法,将内存映射转换为可用帧的迭代器。
```rust ```rust
// in src/memory.rs // in src/memory.rs

View File

@@ -570,11 +570,26 @@ use super::align_up;
use core::mem; use core::mem;
impl LinkedListAllocator { impl LinkedListAllocator {
/// Aligns a given address up to a multiple of
/// `mem::align_of::<ListNode>, which is 8 bytes
/// for x86_64.
fn align_to_list_node(addr: usize) -> usize {
align_up(addr, mem::align_of::<ListNode>())
}
/// Checks to make sure that alignment and size conditions
/// to store a `ListNode` are guaranteed for a given region
/// [addr, addr + size).
fn is_valid_region(addr: usize, size: usize) -> bool {
addr == Self::align_to_list_node(addr) &&
size >= mem::size_of::<ListNode>()
}
/// Adds the given memory region to the front of the list. /// Adds the given memory region to the front of the list.
unsafe fn add_free_region(&mut self, addr: usize, size: usize) { unsafe fn add_free_region(&mut self, addr: usize, size: usize) {
// ensure that the freed region is capable of holding ListNode // ensure that the region is capable of holding ListNode
assert_eq!(align_up(addr, mem::align_of::<ListNode>()), addr); assert!(Self::is_valid_region(addr, size));
assert!(size >= mem::size_of::<ListNode>());
// create a new list node and append it at the start of the list // create a new list node and append it at the start of the list
let mut node = ListNode::new(size); let mut node = ListNode::new(size);
@@ -664,18 +679,34 @@ impl LinkedListAllocator {
fn alloc_from_region(region: &ListNode, size: usize, align: usize) fn alloc_from_region(region: &ListNode, size: usize, align: usize)
-> Result<usize, ()> -> Result<usize, ()>
{ {
let alloc_start = align_up(region.start_addr(), align); let mut alloc_start = align_up(region.start_addr(), align);
let alloc_end = alloc_start.checked_add(size).ok_or(())?;
if alloc_start != region.start_addr() {
// We have some potential wasted space at the beginning of the region
// that cannot be used due to alignment constraints. We want to be
// able to recycle this space as well in our linked list. Otherwise
// we may never be able to reclaim this space.
// We need to ensure that there is enough space up front for a `ListNode`
// so we need to realign alloc_start after `size_of::<ListNode>` bytes
// from `region.start_addr()`.
// In practice, this can occur in x86_64 only when align is set to 16 bytes.
let pushed_start_addr = region
.start_addr()
.checked_add(mem::size_of::<ListNode>())
.ok_or(())?;
alloc_start = align_up(pushed_start_addr, align);
}
let alloc_end = alloc_start.checked_add(size).ok_or(())?;
if alloc_end > region.end_addr() { if alloc_end > region.end_addr() {
// region too small // region too small
return Err(()); return Err(());
} }
let excess_size = region.end_addr() - alloc_end; let excess_size = region.end_addr() - alloc_end;
if excess_size > 0 && excess_size < mem::size_of::<ListNode>() { if excess_size > 0 && !Self::is_valid_region(alloc_end, excess_size) {
// rest of region too small to hold a ListNode (required because the // Improper alignment or the rest of region too small to hold a ListNode (required
// allocation splits the region in a used and a free part) // because the allocation splits the region into a used and up to two free parts).
return Err(()); return Err(());
} }
@@ -687,7 +718,16 @@ impl LinkedListAllocator {
First, the function calculates the start and end address of a potential allocation, using the `align_up` function we defined earlier and the [`checked_add`] method. If an overflow occurs or if the end address is behind the end address of the region, the allocation doesn't fit in the region and we return an error. First, the function calculates the start and end address of a potential allocation, using the `align_up` function we defined earlier and the [`checked_add`] method. If an overflow occurs or if the end address is behind the end address of the region, the allocation doesn't fit in the region and we return an error.
The function performs a less obvious check after that. This check is necessary because most of the time an allocation does not fit a suitable region perfectly, so that a part of the region remains usable after the allocation. This part of the region must store its own `ListNode` after the allocation, so it must be large enough to do so. The check verifies exactly that: either the allocation fits perfectly (`excess_size == 0`) or the excess size is large enough to store a `ListNode`. The function performs a couple of less obvious checks on top of that. When we first perform `align_up` we may get an `alloc_start` that is not the same as `region.start_addr()`. In this case, there can still be some free memory we need to keep track of between `region.start_addr()` (inclusive) to this initially aligned `alloc_start` (exclusive). We need to ensure that this region is suitable for storing a `ListNode` by performing the alignment and size checks in `is_valid_region`.
As `region.start_addr()` is guaranteed to satisfy the alignment condition of `ListNode`, we technically only need to guarantee that the size is not too small. We try and realign after accounting for this space to store one `ListNode` instance after `region.start_addr()`. This may end up pushing our end address out of our region, in which case this entire region we are checking will not be sufficient.
It is interesting to note that this situation can occur in one edge case in the 64-bit architecture we are targeting, where `align` is set to 16 bytes and `region.start_addr()` happens to be some number `16*n + 8`. `alloc_start` would then be set to `16*(n+1)`, leaving us `head_excess_size` of just 8 bytes, which would be insufficient to store the 16 bytes required for a `ListNode`.
We could also have some free memory between `alloc_end` (inclusive) to `region.end_addr()` (exclusive). Here `alloc_end` (in general) is not guaranteed to satisfy the alignment condition of `ListNode`, nor is there a guarantee that the remaining space is sufficient to store a `ListNode`. This check is necessary because most of the time an allocation does not fit a suitable region perfectly, so that a part of the region remains usable after the allocation. This part of the region must store its own `ListNode` after the allocation, so it must be large enough to do so, and it must satisfy the alignment condition, which is exactly what our `is_valid_region` method performs.
We shall soon see how we will actually modify the requested layout size and alignment in our implementation of `GlobalAlloc::alloc()` for the `LinkedListAllocator` to ensure that it additionally conforms to the alignment requirements for storing a `ListNode`. This is essential to ensure that `GlobalAllocator::dealloc()` can successfully add the region back into our linked list.
#### Implementing `GlobalAlloc` #### Implementing `GlobalAlloc`
@@ -712,10 +752,20 @@ unsafe impl GlobalAlloc for Locked<LinkedListAllocator> {
if let Some((region, alloc_start)) = allocator.find_region(size, align) { if let Some((region, alloc_start)) = allocator.find_region(size, align) {
let alloc_end = alloc_start.checked_add(size).expect("overflow"); let alloc_end = alloc_start.checked_add(size).expect("overflow");
let excess_size = region.end_addr() - alloc_end;
if excess_size > 0 { let start_addr = region.start_addr();
allocator.add_free_region(alloc_end, excess_size); let end_addr = region.end_addr();
let tail_excess_size = end_addr - alloc_end;
if tail_excess_size > 0 {
allocator.add_free_region(alloc_end, tail_excess_size);
} }
let head_excess_size = alloc_start - start_addr;
if head_excess_size > 0 {
allocator.add_free_region(start_addr, head_excess_size);
}
alloc_start as *mut u8 alloc_start as *mut u8
} else { } else {
ptr::null_mut() ptr::null_mut()
@@ -735,7 +785,7 @@ Let's start with the `dealloc` method because it is simpler: First, it performs
The `alloc` method is a bit more complex. It starts with the same layout adjustments and also calls the [`Mutex::lock`] function to receive a mutable allocator reference. Then it uses the `find_region` method to find a suitable memory region for the allocation and remove it from the list. If this doesn't succeed and `None` is returned, it returns `null_mut` to signal an error as there is no suitable memory region. The `alloc` method is a bit more complex. It starts with the same layout adjustments and also calls the [`Mutex::lock`] function to receive a mutable allocator reference. Then it uses the `find_region` method to find a suitable memory region for the allocation and remove it from the list. If this doesn't succeed and `None` is returned, it returns `null_mut` to signal an error as there is no suitable memory region.
In the success case, the `find_region` method returns a tuple of the suitable region (no longer in the list) and the start address of the allocation. Using `alloc_start`, the allocation size, and the end address of the region, it calculates the end address of the allocation and the excess size again. If the excess size is not null, it calls `add_free_region` to add the excess size of the memory region back to the free list. Finally, it returns the `alloc_start` address casted as a `*mut u8` pointer. In the success case, the `find_region` method returns a tuple of the suitable region (no longer in the list) and the start address of the allocation. Using `alloc_start`, the allocation size, and the end address of the region, it calculates the end address of the allocation and the excess free fragments that are usable again. If the excess sizes are not zero, it calls `add_free_region` to add the excess sizes of the memory regions back to the free list. Finally, it returns the `alloc_start` address casted as a `*mut u8` pointer.
#### Layout Adjustments #### Layout Adjustments
@@ -797,6 +847,51 @@ many_boxes_long_lived... [ok]
This shows that our linked list allocator is able to reuse freed memory for subsequent allocations. This shows that our linked list allocator is able to reuse freed memory for subsequent allocations.
Additionally, to test that we are not leaking any excess segments due to `alloc_start` realignment we can add a simple test case:
```rust
// in tests/heap_allocation.rs
#[test_case]
fn head_excess_reuse() {
#[derive(Debug, Clone, PartialEq, Eq)]
#[repr(C, align(8))]
struct A(u128, u64);
assert_eq!(8, align_of::<A>());
assert_eq!(24, size_of::<A>()); // 24 % 16 = 8
#[derive(Debug, Clone, PartialEq, Eq)]
#[repr(C, align(16))]
struct B(u128, u64);
assert_eq!(16, align_of::<B>());
assert_eq!(32, size_of::<B>());
let a1 = Box::new(A(1, 1));
let b1 = Box::new(B(1, 1));
let a2 = Box::new(A(2, 2));
assert_eq!(*a1, A(1, 1));
assert_eq!(*b1, B(1, 1));
assert_eq!(*a2, A(2, 2));
let a1_raw = Box::into_raw(a1) as usize;
let b1_raw = Box::into_raw(b1) as usize;
let a2_raw = Box::into_raw(a2) as usize;
assert_eq!(HEAP_START, a1);
assert_eq!(HEAP_START + 48, b1);
assert_eq!(HEAP_START + 24, a2);
}
```
In this test case we start off with two identical structs `A` and `B`, with different alignment requirements as specified in their struct `#[repr]` attributes. Instances of `A` will have addresses that are a multiple of 8 and those of `B` will have addresses that are a multiple of `16`.
`a1`, an instance of struct `A` on the heap, takes up space from `HEAP_START` to `HEAP_START + 24`, as `HEAP_START` is a multiple of 8 already. `b1` is an instance of struct `B` on the heap, but it needs an address that is a multiple of 16. Therefore, although `HEAP_START + 24` is available, our `alloc_from_region` will first attempt to set `alloc_start = HEAP_START + 32`. However, this will not leave enough room to store a `ListNode` in the 8 bytes between `HEAP_START + 24` and `HEAP_START + 32`. Next, it will attempt to set `alloc_start = HEAP_START + 48` to satisfy both the alignment constraint and to allow a `ListNode` to account for the excess size at the head end of this region.
Because we are adding the `head_excess_size` fragment after `tail_excess_size` fragment in our `alloc` implementation, and because our linked list implementation follows LIFO (Last In First Out) ordering, our linked list will first search the `head_excess_size` region first on a new heap alloc request. We exploit this fact in this test by trying to allocate `a2`, which is an instance of struct `A`, which should fit neatly in the 24 bytes that were recycled from `HEAP_START + 24` to `HEAP_START + 48` as a part of the `head_excess_size` fragment from the previous allocation for `b1`. We can see that in our final lines of this test we are leaking these Boxed pointers and casting them to `usize` to help perform these assertions to ensure that our linked list allocator accounted for all the excess fragments.
### Discussion ### Discussion
In contrast to the bump allocator, the linked list allocator is much more suitable as a general-purpose allocator, mainly because it is able to directly reuse freed memory. However, it also has some drawbacks. Some of them are only caused by our basic implementation, but there are also fundamental drawbacks of the allocator design itself. In contrast to the bump allocator, the linked list allocator is much more suitable as a general-purpose allocator, mainly because it is able to directly reuse freed memory. However, it also has some drawbacks. Some of them are only caused by our basic implementation, but there are also fundamental drawbacks of the allocator design itself.