Reset src to master to be able to follow step-by-stp

This commit is contained in:
Philipp Oppermann
2015-12-07 18:33:53 +01:00
parent 9019309d40
commit dabef43db9
9 changed files with 10 additions and 492 deletions

View File

@@ -12,10 +12,3 @@ spin = "0.3.4"
[dependencies.multiboot2]
git = "https://github.com/phil-opp/multiboot2-elf64"
[dependencies.x86]
git = "https://github.com/gz/rust-x86"
[dependencies.bitflags]
git = "https://github.com/phil-opp/bitflags.git"
branch = "no_std"

View File

@@ -42,11 +42,6 @@ start:
jmp gdt64.code:long_mode_start
setup_page_tables:
; recursive map P4
mov eax, p4_table
or eax, 0b11 ; present + writable
mov [p4_table + 511 * 8], eax
; map first P4 entry to P3 table
mov eax, p3_table
or eax, 0b11 ; present + writable
@@ -156,7 +151,7 @@ p3_table:
p2_table:
resb 4096
stack_bottom:
resb 4096 * 2
resb 4096
stack_top:
section .rodata

View File

@@ -13,16 +13,12 @@
// limitations under the License.
#![feature(no_std, lang_items)]
#![feature(const_fn, unique, core_str_ext, iter_cmp, optin_builtin_traits)]
#![feature(core_slice_ext)]
#![feature(const_fn, unique, core_str_ext, iter_cmp)]
#![no_std]
extern crate rlibc;
extern crate spin;
extern crate multiboot2;
extern crate x86;
#[macro_use]
extern crate bitflags;
#[macro_use]
mod vga_buffer;
@@ -61,23 +57,13 @@ pub extern fn rust_main(multiboot_information_address: usize) {
let mut frame_allocator = memory::AreaFrameAllocator::new(kernel_start as usize,
kernel_end as usize, multiboot_start, multiboot_end, memory_map_tag.memory_areas());
// println!("outer {}", {println!("inner"); "NO DEADLOCK"});
/*println!("{:?}", memory::paging::translate::translate(0));*/
println!("{:?}", memory::paging::translate::translate(0));
println!("{:?}", memory::paging::translate::translate(0x40000000));
println!("{:?}", memory::paging::translate::translate(0x40000000 - 1));
println!("{:?}", memory::paging::translate::translate(0xdeadbeaa000));
println!("{:?}", memory::paging::translate::translate(0xcafebeaf000));
memory::paging::test(&mut frame_allocator);
println!("{:x}", memory::paging::translate::translate(0xdeadbeaa000).unwrap());
println!("{:x}", memory::paging::translate::translate(0xdeadbeab000).unwrap());
println!("{:x}", memory::paging::translate::translate(0xdeadbeac000).unwrap());
println!("{:x}", memory::paging::translate::translate(0xdeadbead000).unwrap());
println!("{:x}", memory::paging::translate::translate(0xcafebeaf000).unwrap());
for i in 0.. {
use memory::FrameAllocator;
if let None = frame_allocator.allocate_frame() {
println!("allocated {} frames", i);
break;
}
}
loop{}
}

View File

@@ -1,7 +1,5 @@
pub use self::area_frame_allocator::AreaFrameAllocator;
use self::paging::PhysicalAddress;
pub mod paging;
mod area_frame_allocator;
pub const PAGE_SIZE: usize = 4096;
@@ -13,11 +11,7 @@ pub struct Frame {
impl Frame {
fn containing_address(address: usize) -> Frame {
Frame { number: address / PAGE_SIZE }
}
fn start_address(&self) -> PhysicalAddress {
self.number * PAGE_SIZE
Frame{ number: address / PAGE_SIZE }
}
}

View File

@@ -1,46 +0,0 @@
use memory::Frame;
use memory::paging::PhysicalAddress;
pub struct Entry(u64);
impl Entry {
pub fn is_unused(&self) -> bool {
self.0 == 0
}
pub fn set_unused(&mut self) {
self.0 = 0;
}
pub fn flags(&self) -> EntryFlags {
EntryFlags::from_bits_truncate(self.0)
}
pub fn pointed_frame(&self) -> Option<Frame> {
if self.flags().contains(PRESENT) {
Some(Frame::containing_address(self.0 as usize & 0x000fffff_fffff000))
} else {
None
}
}
pub fn set(&mut self, frame: Frame, flags: EntryFlags) {
assert!(frame.start_address() & !0x000fffff_fffff000 == 0);
self.0 = (frame.start_address() as u64) | flags.bits();
}
}
bitflags! {
flags EntryFlags: u64 {
const PRESENT = 1 << 0,
const WRITABLE = 1 << 1,
const USER_ACCESSIBLE = 1 << 2,
const WRITE_THROUGH = 1 << 3,
const NO_CACHE = 1 << 4,
const ACCESSED = 1 << 5,
const DIRTY = 1 << 6,
const HUGE_PAGE = 1 << 7,
const GLOBAL = 1 << 8,
const NO_EXECUTE = 1 << 63,
}
}

View File

@@ -1,24 +0,0 @@
use memory::Frame;
use super::Page;
use super::entry::{EntryFlags, PRESENT};
use memory::FrameAllocator;
use super::table::P4;
pub fn map<A>(page: &Page, flags: EntryFlags, allocator: &mut A)
where A: FrameAllocator
{
let frame = allocator.allocate_frame().expect("out of memory");
map_to(page, frame, flags, allocator)
}
pub fn map_to<A>(page: &Page, frame: Frame, flags: EntryFlags, allocator: &mut A)
where A: FrameAllocator
{
let p4 = unsafe { &mut *P4 };
let mut p3 = p4.next_table_create(page.p4_index(), allocator);
let mut p2 = p3.next_table_create(page.p3_index(), allocator);
let mut p1 = p2.next_table_create(page.p2_index(), allocator);
assert!(p1[page.p1_index()].is_unused());
p1[page.p1_index()].set(frame, flags | PRESENT);
}

View File

@@ -1,225 +0,0 @@
use core::ptr::Unique;
use memory::{PAGE_SIZE, Frame, FrameAllocator};
use self::table::{Table, Level4};
use self::entry::*;
mod entry;
mod table;
pub mod translate;
pub mod mapping;
pub fn test<A>(frame_allocator: &mut A)
where A: super::FrameAllocator
{
use self::entry::PRESENT;
mapping::map(&Page::containing_address(0xdeadbeaa000),
PRESENT,
frame_allocator);
mapping::map(&Page::containing_address(0xdeadbeab000),
PRESENT,
frame_allocator);
mapping::map(&Page::containing_address(0xdeadbeac000),
PRESENT,
frame_allocator);
mapping::map(&Page::containing_address(0xdeadbead000),
PRESENT,
frame_allocator);
mapping::map(&Page::containing_address(0xcafebeaf000),
PRESENT,
frame_allocator);
mapping::map(&Page::containing_address(0x0), PRESENT, frame_allocator);
}
const ENTRY_COUNT: usize = 512;
pub type PhysicalAddress = usize;
pub type VirtualAddress = usize;
pub struct Page {
number: usize,
}
impl Page {
fn containing_address(address: VirtualAddress) -> Page {
assert!(address < 0x0000_8000_0000_0000 || address >= 0xffff_8000_0000_0000,
"invalid address: 0x{:x}",
address);
Page { number: address / PAGE_SIZE }
}
fn start_address(&self) -> VirtualAddress {
self.number * PAGE_SIZE
}
fn p4_index(&self) -> usize {
(self.number >> 27) & 0o777
}
fn p3_index(&self) -> usize {
(self.number >> 18) & 0o777
}
fn p2_index(&self) -> usize {
(self.number >> 9) & 0o777
}
fn p1_index(&self) -> usize {
(self.number >> 0) & 0o777
}
}
pub struct RecursivePageTable {
p4: Unique<Table<Level4>>,
}
impl RecursivePageTable {
pub unsafe fn new() -> RecursivePageTable {
use self::table::P4;
RecursivePageTable {
p4: Unique::new(P4),
}
}
fn p4(&self) -> &Table<Level4> {
unsafe { self.p4.get() }
}
fn p4_mut(&mut self) -> &mut Table<Level4> {
unsafe { self.p4.get_mut() }
}
pub fn translate(&self, virtual_address: VirtualAddress) -> Option<PhysicalAddress> {
let offset = virtual_address % PAGE_SIZE;
self.translate_page(Page::containing_address(virtual_address))
.map(|frame| frame.number * PAGE_SIZE + offset)
}
fn translate_page(&self, page: Page) -> Option<Frame> {
let p3 = self.p4().next_table(page.p4_index());
let huge_page = || {
p3.and_then(|p3| {
let p3_entry = &p3[page.p3_index()];
// 1GiB page?
if let Some(start_frame) = p3_entry.pointed_frame() {
if p3_entry.flags().contains(HUGE_PAGE) {
// address must be 1GiB aligned
assert!(start_frame.number % (ENTRY_COUNT * ENTRY_COUNT) == 0);
return Some(Frame {
number: start_frame.number + page.p2_index() * ENTRY_COUNT +
page.p1_index(),
});
}
}
if let Some(p2) = p3.next_table(page.p3_index()) {
let p2_entry = &p2[page.p2_index()];
// 2MiB page?
if let Some(start_frame) = p2_entry.pointed_frame() {
if p2_entry.flags().contains(HUGE_PAGE) {
// address must be 2MiB aligned
assert!(start_frame.number % ENTRY_COUNT == 0);
return Some(Frame { number: start_frame.number + page.p1_index() });
}
}
}
None
})
};
p3.and_then(|p3| p3.next_table(page.p3_index()))
.and_then(|p2| p2.next_table(page.p2_index()))
.and_then(|p1| p1[page.p1_index()].pointed_frame())
.or_else(huge_page)
}
pub fn map<A>(&mut self, page: Page, flags: EntryFlags, allocator: &mut A)
where A: FrameAllocator
{
let frame = allocator.allocate_frame().expect("out of memory");
self.map_to(page, frame, flags, allocator)
}
pub fn map_to<A>(&mut self, page: Page, frame: Frame, flags: EntryFlags, allocator: &mut A)
where A: FrameAllocator
{
let mut p3 = self.p4_mut().next_table_create(page.p4_index(), allocator);
let mut p2 = p3.next_table_create(page.p3_index(), allocator);
let mut p1 = p2.next_table_create(page.p2_index(), allocator);
assert!(!p1[page.p1_index()].flags().contains(PRESENT));
p1[page.p1_index()].set(frame, flags | PRESENT);
}
pub fn identity_map<A>(&mut self, frame: Frame, flags: EntryFlags, allocator: &mut A)
where A: FrameAllocator
{
let page = Page::containing_address(frame.start_address());
self.map_to(page, frame, flags, allocator)
}
fn unmap<A>(&mut self, page: Page, allocator: &mut A)
where A: FrameAllocator
{
use x86::tlb;
assert!(self.translate(page.start_address()).is_some());
let p1 = self.p4_mut()
.next_table_mut(page.p4_index())
.and_then(|p3| p3.next_table_mut(page.p3_index()))
.and_then(|p2| p2.next_table_mut(page.p2_index()))
.expect("mapping code does not support huge pages");
let frame = p1[page.p1_index()].pointed_frame().unwrap();
p1[page.p1_index()].set_unused();
unsafe { tlb::flush(page.start_address()) };
// TODO free p(1,2,3) table if empty
allocator.deallocate_frame(frame);
}
}
pub struct InactivePageTable {
p4_frame: Frame, // recursive mapped
}
impl InactivePageTable {
pub fn create_new_on_identity_mapped_frame(&self,
identity_mapped_frame: Frame)
-> InactivePageTable {
let page_address = Page { number: identity_mapped_frame.number }.start_address();
// frame must be identity mapped
assert!(self.read(|lock| lock.translate(page_address)) == Some(page_address));
let table = unsafe { &mut *(page_address as *mut Table<Level4>) };
table[511].set(Frame { number: identity_mapped_frame.number }, WRITABLE);
InactivePageTable { p4_frame: identity_mapped_frame }
}
pub fn read<F, R>(&self, f: F) -> R
where F: FnOnce(&RecursivePageTable) -> R
{
self.activate_temporary(|pt| f(pt))
}
pub fn modify<F>(&mut self, f: F)
where F: FnOnce(&mut RecursivePageTable)
{
self.activate_temporary(f)
}
fn activate_temporary<F, R>(&self, f: F) -> R
where F: FnOnce(&mut RecursivePageTable) -> R
{
use memory::paging::table::P4;
let mut page_table = RecursivePageTable { p4: unsafe { Unique::new(P4) } };
let backup = page_table.p4()[511].pointed_frame().unwrap();
if backup == self.p4_frame {
f(&mut page_table)
} else {
page_table.p4_mut()[511]
.set(Frame { number: self.p4_frame.number }, PRESENT | WRITABLE);
let ret = f(&mut page_table);
page_table.p4_mut()[511].set(backup, PRESENT | WRITABLE);
ret
}
}
}

View File

@@ -1,105 +0,0 @@
use memory::FrameAllocator;
use memory::paging::ENTRY_COUNT;
use memory::paging::entry::*;
use core::ops::{Index, IndexMut};
use core::marker::PhantomData;
pub const P4: *mut Table<Level4> = 0xffffffff_fffff000 as *mut _;
pub struct Table<L: TableLevel> {
entries: [Entry; ENTRY_COUNT],
level: PhantomData<L>,
}
impl<L> Table<L> where L: TableLevel
{
pub fn zero(&mut self) {
for entry in self.entries.iter_mut() {
entry.set_unused();
}
}
}
impl<L> Table<L> where L: HierachicalLevel
{
pub fn next_table(&self, index: usize) -> Option<&Table<L::NextLevel>> {
self.next_table_address(index).map(|t| unsafe { &*(t as *const _) })
}
pub fn next_table_mut(&mut self, index: usize) -> Option<&mut Table<L::NextLevel>> {
self.next_table_address(index).map(|t| unsafe { &mut *(t as *mut _) })
}
pub fn next_table_create<A>(&mut self,
index: usize,
allocator: &mut A)
-> &mut Table<L::NextLevel>
where A: FrameAllocator
{
if self.next_table(index).is_none() {
assert!(!self.entries[index].flags().contains(HUGE_PAGE),
"mapping code does not support huge pages");
let frame = allocator.allocate_frame().expect("no frames available");
self.entries[index].set(frame, PRESENT | WRITABLE);
self.next_table_mut(index).unwrap().zero();
}
self.next_table_mut(index).unwrap()
}
fn next_table_address(&self, index: usize) -> Option<usize> {
let entry_flags = self[index].flags();
if entry_flags.contains(PRESENT) && !entry_flags.contains(HUGE_PAGE) {
let table_address = self as *const _ as usize;
Some((table_address << 9) | (index << 12))
} else {
None
}
}
}
impl<L> Index<usize> for Table<L> where L: TableLevel
{
type Output = Entry;
fn index(&self, index: usize) -> &Entry {
&self.entries[index]
}
}
impl<L> IndexMut<usize> for Table<L> where L: TableLevel
{
fn index_mut(&mut self, index: usize) -> &mut Entry {
&mut self.entries[index]
}
}
pub trait TableLevel {}
pub enum Level4 {}
#[allow(dead_code)]
enum Level3 {}
#[allow(dead_code)]
enum Level2 {}
#[allow(dead_code)]
enum Level1 {}
impl TableLevel for Level4 {}
impl TableLevel for Level3 {}
impl TableLevel for Level2 {}
impl TableLevel for Level1 {}
trait HierachicalLevel: TableLevel {
type NextLevel: TableLevel;
}
impl HierachicalLevel for Level4 {
type NextLevel = Level3;
}
impl HierachicalLevel for Level3 {
type NextLevel = Level2;
}
impl HierachicalLevel for Level2 {
type NextLevel = Level1;
}

View File

@@ -1,50 +0,0 @@
use super::{VirtualAddress, PhysicalAddress, Page, ENTRY_COUNT};
use super::table::P4;
use super::entry::HUGE_PAGE;
use memory::{PAGE_SIZE, Frame};
pub fn translate(virtual_address: VirtualAddress) -> Option<PhysicalAddress> {
let offset = virtual_address % PAGE_SIZE;
translate_page(Page::containing_address(virtual_address))
.map(|frame| frame.number * PAGE_SIZE + offset)
}
fn translate_page(page: Page) -> Option<Frame> {
let p4 = unsafe { &*P4 };
let huge_page = || {
p4.next_table(page.p4_index())
.and_then(|p3| {
let p3_entry = &p3[page.p3_index()];
// 1GiB page?
if let Some(start_frame) = p3_entry.pointed_frame() {
if p3_entry.flags().contains(HUGE_PAGE) {
// address must be 1GiB aligned
assert!(start_frame.number % (ENTRY_COUNT * ENTRY_COUNT) == 0);
return Some(Frame {
number: start_frame.number + page.p2_index() * ENTRY_COUNT +
page.p1_index(),
});
}
}
if let Some(p2) = p3.next_table(page.p3_index()) {
let p2_entry = &p2[page.p2_index()];
// 2MiB page?
if let Some(start_frame) = p2_entry.pointed_frame() {
if p2_entry.flags().contains(HUGE_PAGE) {
// address must be 2MiB aligned
assert!(start_frame.number % ENTRY_COUNT == 0);
return Some(Frame { number: start_frame.number + page.p1_index() });
}
}
}
None
})
};
p4.next_table(page.p4_index())
.and_then(|p3| p3.next_table(page.p3_index()))
.and_then(|p2| p2.next_table(page.p2_index()))
.and_then(|p1| p1[page.p1_index()].pointed_frame())
.or_else(huge_page)
}