mirror of
https://github.com/phil-opp/blog_os.git
synced 2025-12-17 06:47:49 +00:00
Markdown links require a blank line before them
This commit is contained in:
@@ -214,6 +214,7 @@ There are various ways to write such a frame allocator:
|
||||
We could create some kind of linked list from the free frames. For example, each frame could begin with a pointer to the next free frame. Since the frames are free, this would not overwrite any data. Our allocator would just save the head of the list and could easily allocate and deallocate frames by updating pointers. Unfortunately, this approach has a problem: It requires reading and writing these free frames. So we would need to map all physical frames to some virtual address, at least temporary. Another disadvantage is that we need to create this linked list at startup. That implies that we need to set over one million pointers at startup if the machine has 4GiB of RAM.
|
||||
|
||||
Another approach is to create some kind of data structure such as a [bitmap or a stack] to manage free frames. We could place it in the already identity mapped area right behind the kernel or multiboot structure. That way we would not need to (temporary) map each free frame. But it has the same problem of the slow initial creating/filling. In fact, we will use this approach in a future post to manage frames that are freed again. But for the initial management of free frames, we use a different method.
|
||||
|
||||
[bitmap or a stack]: http://wiki.osdev.org/Page_Frame_Allocation#Physical_Memory_Allocators
|
||||
|
||||
In the following, we will use Multiboot's memory map directly. The idea is to maintain a simple counter that starts at frame 0 and is increased constantly. If the current frame is available (part of an available area in the memory map) and not used by the kernel or the multiboot structure (we know their start and end addresses), we know that it's free and return it. Else, we increase the counter to the next possibly free frame. That way, we don't need to create a data structure when booting and the physical frames can remain unmapped. The only problem is that we cannot reasonably free frames again, but we will solve that problem in a future post (by adding an intermediate frame stack that saves freed frames).
|
||||
|
||||
Reference in New Issue
Block a user